server/text_generation_server/layers/awq/conversion_utils.py (46 lines of code) (raw):
import torch
from typing import List
AWQ_PACK_ORDER = [0, 2, 4, 6, 1, 3, 5, 7]
REVERSE_AWQ_PACK_ORDER = [0, 4, 1, 5, 2, 6, 3, 7]
def pack(imatrix: torch.Tensor, direction: str = "column"):
"""
Packs a 4-bit integer matrix into a packed 32-bit integer matrix.
Args:
imatrix (torch.Tensor): matrix of integers
direction (str): direction of packing, either "column" or "row"
Returns:
qmatrix (torch.Tensor): packed matrix of integers
"""
shifts = torch.arange(0, 32, 4, dtype=torch.int32, device=imatrix.device)
imatrix = imatrix.to(torch.int8) & 0x0F # eventually correct overflow
if direction == "column":
imatrix = imatrix.view(-1, imatrix.shape[1] // (32 // 4), (32 // 4))
qmatrix = torch.bitwise_left_shift(imatrix, shifts[None, None, :]).sum(dim=-1)
elif direction == "row":
imatrix = imatrix.view(imatrix.shape[0] // (32 // 4), (32 // 4), -1)
qmatrix = torch.bitwise_left_shift(imatrix, shifts[None, :, None]).sum(dim=1)
qmatrix = qmatrix.to(torch.int32)
return qmatrix
def unpack(qmatrix: torch.Tensor, direction: str = "column"):
"""
Unpacks a 32-bit packed integer matrix into a 4-bit integer matrix.
Args:
qmatrix (torch.Tensor): matrix of packed integers
direction (str): direction of unpacking, either "column" or "row"
Returns:
imatrix (torch.Tensor): matrix of integers
"""
shifts = torch.arange(0, 32, 4, device=qmatrix.device)
if direction == "column":
imatrix = torch.bitwise_right_shift(
qmatrix[:, :, None], shifts[None, None, :]
).view(qmatrix.shape[0], -1)
elif direction == "row":
imatrix = torch.bitwise_right_shift(
qmatrix[:, None, :], shifts[None, :, None]
).view(-1, qmatrix.shape[-1])
imatrix = imatrix.to(torch.int8) & 0x0F # eventually correct overflow
return imatrix
def apply_order(
imatrix: torch.Tensor,
direction: str = "column",
order: List[int] = AWQ_PACK_ORDER,
):
"""
Applies the order to a 4-bit integer matrix.
Args:
imatrix (torch.Tensor): matrix of integers
direction (str): direction of applying order, either "column" or "row"
order (List[int]): order to apply, default is AWQ_PACK_ORDER
Returns:
imatrix (torch.Tensor): matrix of integers
"""
if direction == "column":
imatrix = imatrix.view(-1, (32 // 4))[:, order].view(imatrix.shape)
elif direction == "row":
imatrix = imatrix.view((32 // 4), -1)[order, :].view(imatrix.shape)
return imatrix
def fast_awq_to_gptq(qweight, qzeros):
# awq uses column packing for both weights and zeros
izeros = unpack(qzeros, direction="column")
iweights = unpack(qweight, direction="column")
# Reverse the order of the iweight and izeros tensors
izeros = apply_order(izeros, direction="column", order=REVERSE_AWQ_PACK_ORDER)
iweights = apply_order(iweights, direction="column", order=REVERSE_AWQ_PACK_ORDER)
# Subtract 1 from the izeros tensor (gptq adds 1 to the zeros)
izeros = izeros - 1
# exllama uses row packing for weights and column packing for zeros
qzeros = pack(izeros, direction="column")
qweight = pack(iweights, direction="row")
return qweight, qzeros