server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py (457 lines of code) (raw):

# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple from text_generation_server.layers.attention.kv_cache import get_kv_scales from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, Seqlen, ) from text_generation_server.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, SpeculativeHead, TensorParallelMultiAdapterLinear, TensorParallelAdapterRowLinear, ) from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, ) if SYSTEM == "rocm": try: import vllm._custom_ops as ops except Exception as e: raise ImportError(f"Could not load `vllm._custom_ops`. Full error: {e}") class MistralConfig(PretrainedConfig): model_type = "mistral" def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) class MistralAttention(torch.nn.Module): def __init__(self, prefix: str, config, weights, layer_id): super().__init__() self.max_past = ( config.sliding_window if config.sliding_window is not None else -1 ) self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size if getattr(config, "head_dim", None) is not None: self.head_size = config.head_dim else: self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=config.rope_theta, device=weights.device, ) self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) query_key_value = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=False, ) self.query_key_value = TensorParallelMultiAdapterLinear.load( query_key_value, layer_id, ["q_proj", "k_proj", "v_proj"], sizes=[ self.head_size * config.num_attention_heads, self.head_size * config.num_key_value_heads, self.head_size * config.num_key_value_heads, ], process_group=weights.process_group, ) self.kv_scales = get_kv_scales(weights, f"{prefix}") o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) self.o_proj = TensorParallelAdapterRowLinear.load( o_proj, layer_id, "o_proj", process_group=weights.process_group, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, adapter_data, ): qkv = self.query_key_value(hidden_states, adapter_data) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) if prefill_cache_indices is not None: kv_to_cache = kv[prefill_cache_indices] else: kv_to_cache = kv kv_cache.store( key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query=query, key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], kv_cache=kv_cache, kv_scales=self.kv_scales, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, window_size_left=self.max_past, ) # Decode else: attn_output = paged_attention( query, kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, window_size_left=self.max_past, ) return self.o_proj( attn_output.view(-1, self.num_heads * self.head_size), adapter_data ) class MistralMLP(nn.Module): def __init__(self, prefix: str, config, weights, layer_id): super().__init__() self.hidden_act = config.hidden_act self.act = ( ACT2FN[self.hidden_act] if "gelu" not in self.hidden_act else lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if self.hidden_act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) ) # Fuse gate and up proj gate_up_proj = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], weights=weights, dim=0, bias=False, ) self.gate_up_proj = TensorParallelMultiAdapterLinear.load( gate_up_proj, layer_id, ["gate_proj", "up_proj"], sizes=[ config.intermediate_size, config.intermediate_size, ], process_group=weights.process_group, ) down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=False, ) self.down_proj = TensorParallelAdapterRowLinear.load( down_proj, layer_id, "down_proj", process_group=weights.process_group, ) self.intermediate_size = ( config.intermediate_size // weights.process_group.size() ) # TODO: This is a hotfix to be removed & properly refactored. self.quantize = config.quantize def forward(self, hidden_states, adapter_data): if ( SYSTEM == "rocm" and self.hidden_act == "silu" and hidden_states.dtype == torch.float16 and hidden_states.shape[0] == 1 and not self.quantize ): out = torch.empty( hidden_states.shape[0], self.intermediate_size, dtype=hidden_states.dtype, device="cuda", ) ops.LLMM_Silu( self.gate_up_proj.base_layer.linear.weight, hidden_states, out, 8 ) return self.down_proj(out, adapter_data) else: gate_up_states = self.gate_up_proj(hidden_states, adapter_data) gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) return self.down_proj( self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], adapter_data ) class MistralLayer(nn.Module): def __init__(self, prefix: str, config, weights, layer_id): super().__init__() self.self_attn = MistralAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights, layer_id=layer_id, ) self.mlp = MistralMLP( prefix=f"{prefix}.mlp", config=config, weights=weights, layer_id=layer_id ) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = FastRMSNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, adapter_data, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) # Self Attention attn_output = self.self_attn( normed_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, adapter_data, ) # faster post attention rms norm normed_attn_res_output, attn_res = self.post_attention_layernorm( attn_output, res ) mlp_output = self.mlp(normed_attn_res_output, adapter_data) return mlp_output, attn_res class MistralModel(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.layers = nn.ModuleList( [ MistralLayer( prefix=f"{prefix}.layers.{layer_id}", config=config, weights=weights, layer_id=layer_id, ) for layer_id in range(config.num_hidden_layers) ] ) self.norm = FastRMSNorm.load( prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps ) self.gradient_checkpointing = False self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads def forward( self, inputs_embeds: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], adapter_data: Optional[torch.Tensor] = None, ): hidden_states = inputs_embeds # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, true_max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, prefill_cache_indices, adapter_data, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class FlashMistralForCausalLM(torch.nn.Module): def __init__(self, prefix: str, config, weights, name=None): if name is None: name = "model" super().__init__() self.embed_tokens = TensorParallelEmbedding( prefix=( f"{name}.embed_tokens" if not prefix else f"{prefix}.{name}.embed_tokens" ), weights=weights, ) self.model = MistralModel( prefix=name if not prefix else f"{prefix}.{name}", config=config, weights=weights, ) self.lm_head = SpeculativeHead.load( config, # TODO dirty hack for idefics2. prefix=( "lm_head" if not prefix or name != "model" else f"{prefix}.lm_head" ), weights=weights, ) self.max_past = config.sliding_window self.max_past_tensor = ( torch.tensor(config.sliding_window, device=weights.device) if self.max_past is not None else None ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor], lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: true_max_s = max_s if prefill_cache_indices is not None: # Slots also need to be sliced as it has the same size as the whole kv tensor slots = slots[prefill_cache_indices] elif self.max_past is not None: # Clamp in decode mode as paged attention requires clamped values whereas the flash attention # kernel requires the true values seqlen = seqlen.clamp(max=self.max_past_tensor) inputs_embeds = self.embed_tokens(input_ids) hidden_states = self.model( inputs_embeds, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, true_max_s, prefill_cache_indices, adapter_data, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits