server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py (434 lines of code) (raw):

# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Type import torch import torch.distributed from torch import nn from transformers.configuration_utils import PretrainedConfig from text_generation_server.layers import ( FastLinear, SpeculativeHead, TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, get_linear, ) from text_generation_server.layers.attention import ( Seqlen, attention, paged_attention, ) from text_generation_server.layers.attention.kv_cache import get_kv_scales from text_generation_server.layers.layernorm import FastRMSNorm from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.utils.weights import UnquantizedWeight class MixtralConfig(PretrainedConfig): model_type = "mixtral" def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-05, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=None, num_experts_per_tok=2, num_local_experts=8, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.num_experts_per_tok = num_experts_per_tok self.num_local_experts = num_local_experts super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def promote_scalar(x: torch.Tensor) -> torch.Tensor: return x.view(1) if len(x.size()) == 0 else x def load_attention(config, prefix: str, weights): if config.num_attention_heads != config.num_key_value_heads: return _load_gqa(config, prefix, weights) else: return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=False, ) def _load_gqa(config, prefix: str, weights): assert config.hidden_size % config.num_attention_heads == 0 assert config.num_attention_heads % weights.process_group.size() == 0 weight = weights.get_multi_weights_col( prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, ) if isinstance(weight, UnquantizedWeight): weight.weight = weight.weight.to(dtype=weights.dtype).to(device=weights.device) head_size = config.hidden_size // config.num_attention_heads num_heads = config.num_attention_heads // weights.process_group.size() num_key_value_heads = config.num_key_value_heads // weights.process_group.size() assert list(weight.weight.shape) == [ (num_heads + 2 * num_key_value_heads) * head_size, config.hidden_size, ], f"{list(weight.weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" return TensorParallelColumnLinear(get_linear(weight, bias=None)) def _load_experts(config, prefix: str, mat, weights): if config.quantize is not None: raise NotImplementedError("Mixtral does not support weight quantization yet.") assert mat in ["w1", "w2", "w3"] world_size = weights.process_group.size() rank = weights.process_group.rank() assert ( config.intermediate_size % world_size == 0 ), f"The chosen size {config.intermediate_size} is not compatible with sharding on {world_size} shards" block_size = config.intermediate_size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = torch.empty( (config.num_local_experts * block_size, config.hidden_size), dtype=weights.dtype, device=weights.device, ) for i in range(config.num_local_experts): slice_ = weights._get_slice(f"{prefix}.{i}.{mat}.weight") if mat == "w2": expert_slice = slice_[:, start:stop].t().contiguous() else: expert_slice = slice_[start:stop] tensor[i * block_size : (i + 1) * block_size] = expert_slice.to( dtype=weights.dtype ).to(device=weights.device) return tensor class MixtralAttention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.max_past = ( config.sliding_window if config.sliding_window is not None else -1 ) self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=config.rope_theta, device=weights.device, ) self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights) self.kv_scales = get_kv_scales(weights, f"{prefix}") self.o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, ): qkv = self.query_key_value(hidden_states) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) if prefill_cache_indices is not None: kv_to_cache = kv[prefill_cache_indices] else: kv_to_cache = kv kv_cache.store( key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query=query, key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], kv_cache=kv_cache, kv_scales=self.kv_scales, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, window_size_left=self.max_past, ) # Decode else: attn_output = paged_attention( query, kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, window_size_left=self.max_past, ) return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) @torch.jit.script def select_experts(gate_logits: torch.Tensor, top_k: int): # all_probs: (sequence_length, n_experts) and upcast for softmax all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float) # weights, selected_experts: (sequence_length, top-k) weights, selected_experts = torch.topk(all_probs, top_k, dim=-1) weights /= weights.sum(dim=-1, keepdim=True) weights = weights.view(-1) selected_experts = selected_experts.view(-1) return selected_experts, weights @torch.jit.script def round_up(x: torch.Tensor, value: int): return torch.div(x + (value - 1), value, rounding_mode="trunc") * value class MixtralMoE(nn.Module): def __init__( self, prefix, config: MixtralConfig, moe_layer_cls: Type[MoELayer], weights ): super().__init__() # gating self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) self.moe = moe_layer_cls( n_expert_group=None, n_experts=config.num_local_experts, prefix=f"{prefix}.experts", renormalize=True, topk=config.num_experts_per_tok, topk_group=None, weights=weights, gate_proj_name="w1", up_proj_name="w3", down_proj_name="w2", ) assert isinstance(self.moe, MoELayer) self.process_group = weights.process_group def forward(self, x: torch.Tensor) -> torch.Tensor: # router_logits: (num_tokens, n_experts) router_logits = self.gate(x) out = self.moe(x, gating_output=router_logits) # Reduce sum if self.process_group.size() > 1: torch.distributed.all_reduce(out, group=self.process_group) return out.view(*x.shape) class MixtralLayer(nn.Module): def __init__(self, prefix: str, layer_id, config, weights): super().__init__() prefix = f"{prefix}.layers.{layer_id}" self.self_attn = MixtralAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) moe_layer_cls = ( SparseMoELayer if SparseMoELayer.is_supported(weights) else DenseMoELayer ) self.moe = MixtralMoE( f"{prefix}.block_sparse_moe", config, moe_layer_cls, weights ) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = FastRMSNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) # Self Attention attn_output = self.self_attn( normed_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, ) # faster post attention rms norm normed_attn_res_output, attn_res = self.post_attention_layernorm( attn_output, res ) moe_output = self.moe(normed_attn_res_output) return moe_output, attn_res class MixtralModel(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.embed_tokens = TensorParallelEmbedding( prefix=( "model.embed_tokens" if not prefix else f"{prefix}.model.embed_tokens" ), weights=weights, ) self.layers = nn.ModuleList( [ MixtralLayer( "model" if not prefix else f"{prefix}.model", layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.norm = FastRMSNorm.load( prefix="model.norm" if not prefix else f"{prefix}.model.norm", weights=weights, eps=config.rms_norm_eps, ) self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, true_max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, prefill_cache_indices, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class FlashMixtralForCausalLM(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.model = MixtralModel(prefix, config, weights) self.lm_head = SpeculativeHead.load( config, prefix="lm_head" if not prefix else f"{prefix}.lm_head", weights=weights, ) self.max_past = config.sliding_window self.max_past_tensor = ( torch.tensor(config.sliding_window, device=weights.device) if self.max_past is not None else None ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor], lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: true_max_s = max_s if prefill_cache_indices is not None: # Slots also need to be sliced as it has the same size as the whole kv tensor slots = slots[prefill_cache_indices] elif self.max_past is not None: # Clamp in decode mode as paged attention requires clamped values whereas the flash attention # kernel requires the true values seqlen = seqlen.clamp(max=self.max_past_tensor) hidden_states = self.model( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, true_max_s, prefill_cache_indices, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits