server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py (434 lines of code) (raw):
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Type
import torch
import torch.distributed
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from text_generation_server.layers import (
FastLinear,
SpeculativeHead,
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
get_linear,
)
from text_generation_server.layers.attention import (
Seqlen,
attention,
paged_attention,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.layernorm import FastRMSNorm
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.utils.weights import UnquantizedWeight
class MixtralConfig(PretrainedConfig):
model_type = "mixtral"
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=4096 * 32,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
sliding_window=None,
num_experts_per_tok=2,
num_local_experts=8,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.num_experts_per_tok = num_experts_per_tok
self.num_local_experts = num_local_experts
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def promote_scalar(x: torch.Tensor) -> torch.Tensor:
return x.view(1) if len(x.size()) == 0 else x
def load_attention(config, prefix: str, weights):
if config.num_attention_heads != config.num_key_value_heads:
return _load_gqa(config, prefix, weights)
else:
return TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
def _load_gqa(config, prefix: str, weights):
assert config.hidden_size % config.num_attention_heads == 0
assert config.num_attention_heads % weights.process_group.size() == 0
weight = weights.get_multi_weights_col(
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
)
if isinstance(weight, UnquantizedWeight):
weight.weight = weight.weight.to(dtype=weights.dtype).to(device=weights.device)
head_size = config.hidden_size // config.num_attention_heads
num_heads = config.num_attention_heads // weights.process_group.size()
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
assert list(weight.weight.shape) == [
(num_heads + 2 * num_key_value_heads) * head_size,
config.hidden_size,
], f"{list(weight.weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
return TensorParallelColumnLinear(get_linear(weight, bias=None))
def _load_experts(config, prefix: str, mat, weights):
if config.quantize is not None:
raise NotImplementedError("Mixtral does not support weight quantization yet.")
assert mat in ["w1", "w2", "w3"]
world_size = weights.process_group.size()
rank = weights.process_group.rank()
assert (
config.intermediate_size % world_size == 0
), f"The chosen size {config.intermediate_size} is not compatible with sharding on {world_size} shards"
block_size = config.intermediate_size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = torch.empty(
(config.num_local_experts * block_size, config.hidden_size),
dtype=weights.dtype,
device=weights.device,
)
for i in range(config.num_local_experts):
slice_ = weights._get_slice(f"{prefix}.{i}.{mat}.weight")
if mat == "w2":
expert_slice = slice_[:, start:stop].t().contiguous()
else:
expert_slice = slice_[start:stop]
tensor[i * block_size : (i + 1) * block_size] = expert_slice.to(
dtype=weights.dtype
).to(device=weights.device)
return tensor
class MixtralAttention(torch.nn.Module):
def __init__(
self,
prefix: str,
config,
weights,
):
super().__init__()
self.max_past = (
config.sliding_window if config.sliding_window is not None else -1
)
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.softmax_scale = self.head_size**-0.5
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
config.num_key_value_heads // weights.process_group.size()
)
self.query_key_value = load_attention(config, prefix, weights)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
self.num_groups = self.num_heads // self.num_key_value_heads
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
def forward(
self,
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
):
qkv = self.query_key_value(hidden_states)
query, kv = qkv.split(
[
self.head_size * self.num_heads,
2 * self.head_size * self.num_key_value_heads,
],
dim=1,
)
query = query.view(-1, self.num_heads, self.head_size)
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
if prefill_cache_indices is not None:
kv_to_cache = kv[prefill_cache_indices]
else:
kv_to_cache = kv
kv_cache.store(
key=kv_to_cache[:, 0],
value=kv_to_cache[:, 1],
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
attn_output = attention(
query=query,
key=kv_to_cache[:, 0],
value=kv_to_cache[:, 1],
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
block_tables=block_tables,
softmax_scale=self.softmax_scale,
window_size_left=self.max_past,
)
# Decode
else:
attn_output = paged_attention(
query,
kv_cache,
self.kv_head_mapping,
self.softmax_scale,
block_tables,
seqlen,
max_s,
kv_scales=self.kv_scales,
window_size_left=self.max_past,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
@torch.jit.script
def select_experts(gate_logits: torch.Tensor, top_k: int):
# all_probs: (sequence_length, n_experts) and upcast for softmax
all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float)
# weights, selected_experts: (sequence_length, top-k)
weights, selected_experts = torch.topk(all_probs, top_k, dim=-1)
weights /= weights.sum(dim=-1, keepdim=True)
weights = weights.view(-1)
selected_experts = selected_experts.view(-1)
return selected_experts, weights
@torch.jit.script
def round_up(x: torch.Tensor, value: int):
return torch.div(x + (value - 1), value, rounding_mode="trunc") * value
class MixtralMoE(nn.Module):
def __init__(
self, prefix, config: MixtralConfig, moe_layer_cls: Type[MoELayer], weights
):
super().__init__()
# gating
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
self.moe = moe_layer_cls(
n_expert_group=None,
n_experts=config.num_local_experts,
prefix=f"{prefix}.experts",
renormalize=True,
topk=config.num_experts_per_tok,
topk_group=None,
weights=weights,
gate_proj_name="w1",
up_proj_name="w3",
down_proj_name="w2",
)
assert isinstance(self.moe, MoELayer)
self.process_group = weights.process_group
def forward(self, x: torch.Tensor) -> torch.Tensor:
# router_logits: (num_tokens, n_experts)
router_logits = self.gate(x)
out = self.moe(x, gating_output=router_logits)
# Reduce sum
if self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group)
return out.view(*x.shape)
class MixtralLayer(nn.Module):
def __init__(self, prefix: str, layer_id, config, weights):
super().__init__()
prefix = f"{prefix}.layers.{layer_id}"
self.self_attn = MixtralAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
moe_layer_cls = (
SparseMoELayer if SparseMoELayer.is_supported(weights) else DenseMoELayer
)
self.moe = MixtralMoE(
f"{prefix}.block_sparse_moe", config, moe_layer_cls, weights
)
self.input_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.post_attention_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
def forward(
self,
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
# Self Attention
attn_output = self.self_attn(
normed_hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
)
# faster post attention rms norm
normed_attn_res_output, attn_res = self.post_attention_layernorm(
attn_output, res
)
moe_output = self.moe(normed_attn_res_output)
return moe_output, attn_res
class MixtralModel(torch.nn.Module):
def __init__(self, prefix: str, config, weights):
super().__init__()
self.embed_tokens = TensorParallelEmbedding(
prefix=(
"model.embed_tokens" if not prefix else f"{prefix}.model.embed_tokens"
),
weights=weights,
)
self.layers = nn.ModuleList(
[
MixtralLayer(
"model" if not prefix else f"{prefix}.model",
layer_id,
config,
weights,
)
for layer_id in range(config.num_hidden_layers)
]
)
self.norm = FastRMSNorm.load(
prefix="model.norm" if not prefix else f"{prefix}.model.norm",
weights=weights,
eps=config.rms_norm_eps,
)
self.head_size = self.layers[0].self_attn.head_size
self.num_heads = self.layers[0].self_attn.num_heads
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, true_max_s, hidden_states.dtype
)
residual = None
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
seqlen,
max_s,
prefill_cache_indices,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class FlashMixtralForCausalLM(torch.nn.Module):
def __init__(self, prefix: str, config, weights):
super().__init__()
self.model = MixtralModel(prefix, config, weights)
self.lm_head = SpeculativeHead.load(
config,
prefix="lm_head" if not prefix else f"{prefix}.lm_head",
weights=weights,
)
self.max_past = config.sliding_window
self.max_past_tensor = (
torch.tensor(config.sliding_window, device=weights.device)
if self.max_past is not None
else None
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
true_max_s = max_s
if prefill_cache_indices is not None:
# Slots also need to be sliced as it has the same size as the whole kv tensor
slots = slots[prefill_cache_indices]
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
seqlen = seqlen.clamp(max=self.max_past_tensor)
hidden_states = self.model(
input_ids,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
seqlen,
max_s,
true_max_s,
prefill_cache_indices,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits = self.lm_head(hidden_states)
return logits