server/text_generation_server/models/custom_modeling/flash_neox_modeling.py (339 lines of code) (raw):

# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from transformers.modeling_utils import PreTrainedModel from transformers.models.gpt_neox import GPTNeoXConfig as TransformersGPTNeoXConfig from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, Seqlen, ) from text_generation_server.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, SpeculativeHead, get_linear, ) from text_generation_server.layers.attention.kv_cache import get_kv_scales from text_generation_server.layers.layernorm import ( FastLayerNorm, ) from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) from text_generation_server.utils.weights import UnquantizedWeight class GPTNeoXConfig(TransformersGPTNeoXConfig): attribute_map = { "num_key_value_heads": "num_attention_heads", } def load_row(config, prefix: str, weights, bias: bool): weight = weights.get_weights_row(prefix) if bias and weights.process_group.rank() == 0: # Rank is only on the first rank process bias = weights.get_tensor(f"{prefix}.bias") else: bias = None linear = get_linear(weight, bias) if config.use_parallel_residual: return linear else: return TensorParallelRowLinear(linear, process_group=weights.process_group) def load_qkv(config, prefix: str, weights, num_heads, head_size, hidden_size): weight = weights.get_multi_weights_col([prefix], dim=0) if isinstance(weight, UnquantizedWeight): # Only on non quantized versions weight.weight = ( weight.weight.view( num_heads, 3, head_size, hidden_size, ) .permute(1, 0, 2, 3) .reshape(-1, hidden_size) ) bias = weights.get_sharded(f"{prefix}.bias", dim=0) bias = bias.view(num_heads, 3, head_size).permute(1, 0, 2).reshape(-1) linear = get_linear(weight, bias) if config.use_parallel_residual: return linear else: return TensorParallelColumnLinear(linear) class FlashNeoxAttention(torch.nn.Module): def __init__(self, config, prefix, weights): super().__init__() num_heads = config.num_attention_heads hidden_size = config.hidden_size self.num_heads = num_heads self.hidden_size = hidden_size self.head_size = hidden_size // num_heads self.rotary_dim = int(config.rotary_pct * self.head_size) if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.rotary_dim, base=config.rotary_emb_base, device=weights.device, ) self.softmax_scale = self.head_size ** (-0.5) self.query_key_value = load_qkv( config, prefix=f"{prefix}.query_key_value", weights=weights, num_heads=self.num_heads, head_size=self.head_size, hidden_size=self.hidden_size, ) self.kv_scales = get_kv_scales(weights, f"{prefix}") self.dense = load_row( config, prefix=f"{prefix}.dense", weights=weights, bias=True ) self.kv_head_mapping = torch.arange( 0, self.num_heads, dtype=torch.int32, device=weights.device ) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): qkv = self.query_key_value(hidden_states) qkv = qkv.view(-1, 3, self.num_heads, self.head_size) # Compute rotary embeddings on rotary_ndims query_rot = qkv[:, 0][..., : self.rotary_dim] query_pass = qkv[:, 0][..., self.rotary_dim :] key_rot = qkv[:, 1][..., : self.rotary_dim] key_pass = qkv[:, 1][..., self.rotary_dim :] # Inplace rotary self.rotary_emb(query_rot, key_rot, cos, sin) qkv[:, 0] = torch.cat((query_rot, query_pass), dim=-1) qkv[:, 1] = torch.cat((key_rot, key_pass), dim=-1) kv_cache.store( key=qkv[:, 1], value=qkv[:, 2], slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query=qkv[:, 0], key=qkv[:, 1], value=qkv[:, 2], kv_cache=kv_cache, kv_scales=self.kv_scales, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, ) # Decode else: attn_output = paged_attention( qkv[:, 0], kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, ) return self.dense(attn_output.view(-1, self.num_heads * self.head_size)) class FlashMLP(nn.Module): def __init__(self, config, prefix, weights): super().__init__() act = config.hidden_act self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) ) self.dense_h_to_4h = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True ) self.dense_4h_to_h = load_row( config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True ) def forward(self, hidden_states): hidden_states = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dense_4h_to_h(hidden_states) return hidden_states class FlashNeoXLayer(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() layer_norm_eps = config.layer_norm_eps prefix = f"gpt_neox.layers.{layer_id}" self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = FastLayerNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=layer_norm_eps ) self.post_attention_layernorm = FastLayerNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=layer_norm_eps, ) self.attention = FlashNeoxAttention( config, prefix=f"{prefix}.attention", weights=weights ) self.mlp = FlashMLP(config, prefix=f"{prefix}.mlp", weights=weights) self.process_group = weights.process_group def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): if self.use_parallel_residual: ln1_hidden_states, _ = self.input_layernorm(hidden_states) attn_output = self.attention( ln1_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) ln2_hidden_states, _ = self.post_attention_layernorm(hidden_states) mlp_output = self.mlp(ln2_hidden_states) intermediate = mlp_output + attn_output if self.process_group.size() > 1: torch.distributed.all_reduce(intermediate, group=self.process_group) return intermediate + hidden_states, None else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.attention( hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) hidden_states, residual = self.post_attention_layernorm( hidden_states, residual ) mlp_output = self.mlp(hidden_states) return mlp_output, residual class FlashGPTNeoXPreTrainedModel(PreTrainedModel): config_class = GPTNeoXConfig base_model_prefix = "gpt_neox" supports_gradient_checkpointing = False _no_split_modules = None class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel): def __init__(self, prefix: str, config, weights): super().__init__(config) self.config = config self.embed_in = TensorParallelEmbedding( prefix=f"{prefix}.embed_in", weights=weights ) self.layers = nn.ModuleList( [ FlashNeoXLayer(layer_id, config, weights) for layer_id in range(config.num_hidden_layers) ] ) self.final_layer_norm = FastLayerNorm.load( prefix=f"{prefix}.final_layer_norm", weights=weights, eps=config.layer_norm_eps, ) self.gradient_checkpointing = False self.head_size = self.layers[0].attention.head_size self.num_heads = self.layers[0].attention.num_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, ) -> torch.Tensor: hidden_states = self.embed_in(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].attention.rotary_emb.get_cos_sin( position_ids, max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, ) hidden_states, _ = self.final_layer_norm(hidden_states, residual) return hidden_states class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel): def __init__(self, prefix, config, weights): super().__init__(config) if not prefix: prefix = "gpt_neox" else: prefix = f"{prefix}.gpt_neox" self.gpt_neox = FlashGPTNeoXModel(prefix, config, weights) self.embed_out = SpeculativeHead.load( config, prefix="embed_out", weights=weights ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor], lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.gpt_neox( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.embed_out(hidden_states) return logits