server/text_generation_server/models/custom_modeling/flash_phi_modeling.py (354 lines of code) (raw):

import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, Seqlen, ) from text_generation_server.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, SpeculativeHead, get_linear, ) from text_generation_server.layers.attention.kv_cache import get_kv_scales from text_generation_server.layers.layernorm import ( FastLayerNorm, ) from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) class PhiConfig(PretrainedConfig): def __init__( self, vocab_size=51200, hidden_size=2560, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="gelu_fast", # llama uses silu layer_norm_eps=1e-05, # rms in llama, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, resid_pdrop=0.1, # llama doesn't have this partial_rotary_factor=0.5, # important difference between llama and phi **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.rope_theta = rope_theta self.resid_pdrop = resid_pdrop self.partial_rotary_factor = partial_rotary_factor super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # this is the same as llama except for Phi uses bias=True def load_attention(config, prefix, weights): if config.num_attention_heads != config.num_key_value_heads: return _load_gqa(config, prefix, weights) else: return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=True, ) def _load_gqa(config, prefix: str, weights): assert config.hidden_size % config.num_attention_heads == 0 assert config.num_attention_heads % weights.process_group.size() == 0 weight = weights.get_multi_weights_col( prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, ) if config.quantize not in ["gptq", "awq", "marlin"]: weight = weight.to(dtype=weights.dtype).to(device=weights.device) head_size = config.hidden_size // config.num_attention_heads num_heads = config.num_attention_heads // weights.process_group.size() num_key_value_heads = config.num_key_value_heads // weights.process_group.size() assert list(weight.shape) == [ (num_heads + 2 * num_key_value_heads) * head_size, config.hidden_size, ], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" # this is the same as llama except for Phi uses bias=True return TensorParallelColumnLinear(get_linear(weight, bias=True)) class FlashPhiAttention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.softmax_scale = self.head_size**-0.5 self.rotary_dim = int(config.partial_rotary_factor * self.head_size) self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.rotary_dim, base=config.rope_theta, device=weights.device, ) if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights) self.kv_scales = get_kv_scales(weights, f"{prefix}") # in llama the dense layer is called "o_proj" and has bias=False self.dense = TensorParallelRowLinear.load( config, prefix=f"{prefix}.dense", weights=weights, bias=True, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): # Compute query, key, value and split qkv = self.query_key_value(hidden_states) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) # Reshape query and key for rotary embeddings query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) # NOTE: this is the main difference between Llama and Phi # in llama the rotary embeddings are applied to the whole query and key. # Phi uses PARTIAL rotary embeddings, which are applied to the first 32 dimensions # # Apply partial positional embeddings in place self.rotary_emb( query[:, :, : self.rotary_dim], kv[:, 0, :, : self.rotary_dim], cos, sin ) # Reshape key and value and cache kv_cache.store( key=kv[:, 0], value=kv[:, 1], slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: attn_output = attention( query=query, key=kv[:, 0], value=kv[:, 1], kv_scales=self.kv_scales, kv_cache=kv_cache, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, ) # Decode else: attn_output = paged_attention( query, kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, ) return self.dense(attn_output.view(-1, self.num_heads * self.head_size)) class PhiMLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() act = config.hidden_act self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) ) # llama weights are up_proj and down_proj and bias=False self.up_proj = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.fc1", weights=weights, bias=True, ) self.down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.fc2", weights=weights, bias=True, ) def forward(self, hidden_states): # NOTE: Llama requires the gate up states to an intermediate size # Phi does not and we can avoid the `view` operation return self.down_proj(self.act(self.up_proj(hidden_states))) class FlashPhiLayer(nn.Module): def __init__(self, prefix: str, layer_id, config, weights): super().__init__() prefix = f"{prefix}.layers.{layer_id}" self.self_attn = FlashPhiAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) self.mlp = PhiMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.input_layernorm = FastLayerNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.layer_norm_eps, ) self.resid_dropout = torch.nn.Dropout(config.resid_pdrop) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): hidden_states, res = self.input_layernorm(hidden_states, residual) # Self Attention attn_output = self.self_attn( hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) hidden_states = self.resid_dropout(attn_output).add( self.resid_dropout(self.mlp(hidden_states)) ) return hidden_states, res class FlashPhiModel(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.embed_tokens = TensorParallelEmbedding( prefix=f"{prefix}.embed_tokens", weights=weights ) self.layers = nn.ModuleList( [ FlashPhiLayer( prefix, layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads self.norm = FastLayerNorm.load( prefix="model.final_layernorm", weights=weights, eps=config.layer_norm_eps, ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class FlashPhiForCausalLM(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() if not prefix: prefix = "model" else: prefix = f"{prefix}.model" self.model = FlashPhiModel(prefix, config, weights) self.lm_head = SpeculativeHead.load( config, prefix="lm_head", weights=weights, ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor], lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.model( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] return self.lm_head(hidden_states)