server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py (398 lines of code) (raw):

import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, Seqlen, ) from text_generation_server.layers import ( TensorParallelMultiAdapterLinear, TensorParallelAdapterRowLinear, TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, SpeculativeHead, ) from text_generation_server.layers.attention.kv_cache import get_kv_scales from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, ) def load_attention(config, prefix, weights, layer_id): prefixes = [f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"] head_size = config.hidden_size // config.num_attention_heads sizes = [ head_size * config.num_attention_heads, head_size * config.num_key_value_heads, head_size * config.num_key_value_heads, ] if config.num_attention_heads != config.num_key_value_heads: base_layer = _load_gqa(config, prefix, weights) else: base_layer = TensorParallelColumnLinear.load_multi( config, prefixes=prefixes, dim=0, weights=weights, bias=True, ) return TensorParallelMultiAdapterLinear.load( base_layer=base_layer, layer_id=layer_id, layer_names=prefixes, sizes=sizes, process_group=weights.process_group, ) def _load_gqa(config, prefix: str, weights): assert config.hidden_size % config.num_attention_heads == 0 assert config.num_attention_heads % weights.process_group.size() == 0 return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=True, ) class Qwen2Attention(torch.nn.Module): def __init__( self, index: int, prefix: str, config, weights, ): super().__init__() self.window_size = ( config.sliding_window if config.sliding_window is not None else -1 ) self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=config.rope_theta, device=weights.device, ) self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights, index) self.kv_scales = get_kv_scales(weights, f"{prefix}") o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) self.o_proj = TensorParallelAdapterRowLinear.load( o_proj, index, "o_proj", process_group=weights.process_group, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, adapter_data, ): qkv = self.query_key_value(hidden_states, adapter_data) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) if prefill_cache_indices is not None: kv_to_cache = kv[prefill_cache_indices] else: kv_to_cache = kv kv_cache.store( key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query=query, key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], kv_cache=kv_cache, kv_scales=self.kv_scales, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, window_size_left=self.window_size, ) # Decode else: attn_output = paged_attention( query, kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, window_size_left=self.window_size, ) return self.o_proj( attn_output.view(-1, self.num_heads * self.head_size), adapter_data ) class Qwen2MLP(nn.Module): def __init__(self, prefix, config, weights, index): super().__init__() act = config.hidden_act self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) ) # Fuse gate and up proj prefixes = [f"{prefix}.gate_proj", f"{prefix}.up_proj"] sizes = [ config.intermediate_size, config.intermediate_size, ] gate_up_proj = TensorParallelColumnLinear.load_multi( config, prefixes=prefixes, weights=weights, dim=0, bias=False, ) self.gate_up_proj = TensorParallelMultiAdapterLinear.load( gate_up_proj, layer_id=index, layer_names=prefixes, sizes=sizes, process_group=weights.process_group, ) down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=False, ) self.down_proj = TensorParallelAdapterRowLinear.load( down_proj, index, "down_proj", process_group=weights.process_group, ) self.intermediate_size = ( config.intermediate_size // weights.process_group.size() ) def forward(self, hidden_states, adapter_data): gate_up_states = self.gate_up_proj(hidden_states, adapter_data) gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) return self.down_proj( self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], adapter_data ) class Qwen2Layer(nn.Module): def __init__(self, prefix, layer_id, config, weights): super().__init__() prefix = f"{prefix}.layers.{layer_id}" self.self_attn = Qwen2Attention( index=layer_id, prefix=f"{prefix}.self_attn", config=config, weights=weights ) self.mlp = Qwen2MLP( prefix=f"{prefix}.mlp", config=config, weights=weights, index=layer_id ) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = FastRMSNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, adapter_data, ): normed_hidden_states, residual = self.input_layernorm(hidden_states) # Self Attention attn_output = self.self_attn( normed_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, adapter_data, ) hidden_states = attn_output + residual # faster post attention rms norm hidden_states, residual = self.post_attention_layernorm(hidden_states) mlp_output = self.mlp(hidden_states, adapter_data) hidden_states = mlp_output + residual return hidden_states class Qwen2Model(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() prefix = f"{prefix}.model" if prefix else "model" process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.layers = nn.ModuleList( [ Qwen2Layer( prefix, layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.norm = FastRMSNorm.load( prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps ) self.gradient_checkpointing = False self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads def forward( self, inputs_embeds: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], adapter_data, ) -> torch.Tensor: hidden_states = inputs_embeds cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, true_max_s, hidden_states.dtype, ) residual = None for i, layer in enumerate(self.layers): hidden_states = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, prefill_cache_indices, adapter_data, ) hidden_states, _ = self.norm(hidden_states) return hidden_states class Qwen2ForCausalLM(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.model = Qwen2Model(prefix, config, weights) if config.tie_word_embeddings: suffix = "model.embed_tokens" else: suffix = "lm_head" self.lm_head = SpeculativeHead.load( config, prefix=f"{prefix}.{suffix}" if prefix else suffix, weights=weights, ) self.embed_tokens = TensorParallelEmbedding( prefix=f"{prefix}.embed_tokens" if prefix else "model.embed_tokens", weights=weights, ) self.window_size = config.sliding_window self.window_size_tensor = ( torch.tensor(config.sliding_window, device=weights.device) if self.window_size is not None else None ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor] = None, lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: true_max_s = max_s if prefill_cache_indices is not None: # Slots also need to be sliced as it has the same size as the whole kv tensor slots = slots[prefill_cache_indices] elif self.window_size is not None: # Clamp in decode mode as paged attention requires clamped values whereas the flash attention # kernel requires the true values seqlen = seqlen.clamp(max=self.window_size_tensor) inputs_embeds = self.embed_tokens(input_ids) hidden_states = self.model( inputs_embeds, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, true_max_s, prefill_cache_indices, adapter_data, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits