server/text_generation_server/models/custom_modeling/gemma3/configuration_gemma3.py (113 lines of code) (raw):
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma3/modular_gemma3.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma3.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
from transformers import SiglipVisionConfig
logger = logging.get_logger(__name__)
class Gemma3TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma3Model`]. It is used to instantiate a Gemma3
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma3-4B.
e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 262144):
Vocabulary size of the Gemma3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Gemma3Model`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
sliding_window (`int`, *optional*, defaults to 4096): in Gemma3, every other layer uses sliding window
attention. This is the size of the sliding window.
query_pre_attn_scalar (`float`, *optional*):
The scaling factor used on the attention scores, not that
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings used for global attention.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
rope_local_base_freq (float, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings for local attention.
sliding_window_pattern (`int`, *optional*, defaults to 6):
Pattern for the sliding window attention.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to
`"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"`
activation function.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
final_logit_softcapping (`bool`, *optional*, defaults to `True`):
Whether to apply logit softcapping or nor
attn_logit_softcapping (`float`, *optional*, defaults to 50.0):
Scaling factor when applying tanh soft-capping on the attention scorexs.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`):
The cache type to be used with `generate`.
```python
>>> from transformers import Gemma3Model, Gemma3TextConfig
>>> # Initializing a Gemma3 gemma3-4b style configuration
>>> configuration = Gemma3Config()
>>> # Initializing a model from the gemma3-4b style configuration
>>> model = Gemma3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma3_text"
def __init__(
self,
vocab_size: int = 262_144,
hidden_size: int = 2304,
intermediate_size: int = 9216,
num_hidden_layers: int = 26,
num_attention_heads: int = 8,
num_key_value_heads: int = 4,
head_dim: int = 256,
sliding_window: int = 4096,
query_pre_attn_scalar: Optional[float] = 256,
rope_theta: float = 1_000_000.0,
rope_scaling=None,
rope_local_base_freq: float = 10_000.0,
sliding_window_pattern: int = 6,
rms_norm_eps: float = 1e-6,
hidden_activation: str = "gelu_pytorch_tanh",
pad_token_id: int = 0,
eos_token_id: int = 1,
bos_token_id: int = 2,
tie_word_embeddings: bool = True,
max_position_embeddings: int = 131_072,
initializer_range: float = 0.02,
attention_bias: bool = False,
attention_dropout: float = 0.0,
use_cache: bool = True,
final_logit_softcapping=None,
attn_logit_softcapping=None,
cache_implementation: str = "hybrid",
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.rope_local_base_freq = rope_local_base_freq
# For configuring HybridCache to work with 5:1 attention pattern
self.sliding_window_pattern = sliding_window_pattern
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.cache_implementation = cache_implementation
rope_config_validation(self)
class Gemma3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma3ForConditionalGeneration`]. It is used to instantiate an
Gemma3ForConditionalGeneration according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the PaliGemma-2B.
e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`Union[Gemma3TextConfig, dict]`, *optional*):
The config object of the text backbone.
vision_config (`Union[AutoConfig, dict]`, *optional*):
Custom vision config or dict.
mm_tokens_per_image (`int`, *optional*, defaults to 256):
The number of tokens per image embedding.
boi_token_index (`int`, *optional*, defaults to 255999):
The begin-of-image token index to wrap the image prompt.
eoi_token_index (`int`, *optional*, defaults to 256000):
The end-of-image token index to wrap the image prompt.
image_token_index (`int`, *optional*, defaults to 262144):
The image token index to encode the image prompt.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import Gemma3ForConditionalGeneration, Gemma3Config, SiglipVisionConfig, Gemma3TextConfig
>>> # Initializing a Siglip-like vision config
>>> vision_config = SiglipVisionConfig()
>>> # Initializing a Gemma3 Text config
>>> text_config = Gemma3TextConfig()
>>> # Initializing a Gemma3 gemma-3-4b style configuration
>>> configuration = Gemma3Config(vision_config, text_config)
>>> # Initializing a model from the gemma-3-4b style configuration
>>> model = Gemma3TextConfig(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma3"
sub_configs = {
"text_config": Gemma3TextConfig,
"vision_config": SiglipVisionConfig,
}
def __init__(
self,
text_config: Optional[Gemma3TextConfig] = None,
vision_config: Optional[SiglipVisionConfig] = None,
mm_tokens_per_image: int = 256,
boi_token_index: int = 255_999,
eoi_token_index: int = 256_000,
image_token_index: int = 262_144,
initializer_range: float = 0.02,
**kwargs,
):
if text_config is None:
text_config = Gemma3TextConfig()
logger.info(
"text_config is None, using default Gemma3TextConfig vision config."
)
elif isinstance(text_config, dict):
text_config = Gemma3TextConfig(**text_config)
if isinstance(vision_config, dict):
vision_config = SiglipVisionConfig(**vision_config)
else:
vision_config = SiglipVisionConfig()
logger.info(
"vision_config is None or incompatible with Gemma3VisionConfig intialization. Gemma3 will be limited "
"to text tasks."
)
self.text_config = text_config
self.vision_config = vision_config
self.mm_tokens_per_image = mm_tokens_per_image
self.boi_token_index = boi_token_index
self.eoi_token_index = eoi_token_index
self.image_token_index = image_token_index
self.initializer_range = initializer_range
super().__init__(**kwargs)
__all__ = ["Gemma3Config", "Gemma3TextConfig"]