server/text_generation_server/models/custom_modeling/gemma3/processing_gemma3.py (137 lines of code) (raw):
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import List, Optional, Union
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import (
ImagesKwargs,
ProcessingKwargs,
ProcessorMixin,
Unpack,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import to_py_obj
from text_generation_server.models.custom_modeling.gemma3.image_processing_gemma3 import (
Gemma3ImageProcessor,
)
from transformers.image_utils import PILImageResampling
from .utils import make_nested_list_of_images
class Gemma3ImagesKwargs(ImagesKwargs):
do_pan_and_scan: Optional[bool]
pan_and_scan_min_crop_size: Optional[int]
pan_and_scan_max_num_crops: Optional[int]
pan_and_scan_min_ratio_to_activate: Optional[float]
do_convert_rgb: Optional[bool]
class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {
"do_pan_and_scan": False,
"pan_and_scan_min_crop_size": 256,
"pan_and_scan_max_num_crops": 4,
"pan_and_scan_min_ratio_to_activate": 1.2,
},
}
class Gemma3Processor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
# # image_processor_class = "Gemma3ImageProcessor"
image_processor_class = "AutoProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor,
tokenizer,
chat_template=None,
num_mm_soft_tokens_per_image: int = 256,
**kwargs,
):
num_mm_soft_tokens_per_image = 256
chat_template = None
image_processor = Gemma3ImageProcessor(
image_mean=(127.5,) * 3,
image_std=(127.5,) * 3,
size={"height": 896, "width": 896},
do_rescale=False,
resample=PILImageResampling.BILINEAR,
)
self.image_token_id = tokenizer.image_token_id
image_tokens_expanded = "".join(
[tokenizer.image_token] * num_mm_soft_tokens_per_image
)
self.full_image_sequence = (
f"\n\n{tokenizer.boi_token}{image_tokens_expanded}{tokenizer.eoi_token}\n\n"
)
self.image_processor = image_processor
self.tokenizer = tokenizer
self.chat_template = chat_template
# super().__init__(
# image_processor=image_processor,
# tokenizer=tokenizer,
# chat_template=chat_template,
# **kwargs,
# )
def __call__(
self,
images: ImageInput = None,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
videos=None,
audio=None,
**kwargs: Unpack[Gemma3ProcessorKwargs],
) -> BatchFeature:
if text is None and images is None:
raise ValueError("Provide at least one of `text` or `images`.")
output_kwargs = self._merge_kwargs(
Gemma3ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError(
"Invalid input text. Please provide a string, or a list of strings"
)
image_inputs = {}
if images is not None:
batched_images = make_nested_list_of_images(images)
image_inputs = self.image_processor(
batched_images, **output_kwargs["images_kwargs"]
)
# Create empty text to be replaced with placeholders
if not text:
text = [
" ".join(["<image>"] * len(images)) for images in batched_images
]
if len(batched_images) != len(text):
raise ValueError(
f"Received inconsistently sized batches of images ({len(batched_images)}) and text ({len(text)})."
)
# Replace image tokens by the full expanded sequence
batch_num_crops = to_py_obj(image_inputs.pop("num_crops"))
for prompt, images, num_crops in zip(text, batched_images, batch_num_crops):
image_indexes = [m.start() for m in re.finditer("<image>", prompt)]
if len(images) != len(image_indexes):
raise ValueError(
f"Prompt contained {len(image_indexes)} image tokens but received {len(images)} images."
)
# Insert additional image tokens for Pan-and-Scan crops
for num, idx in reversed(list(zip(num_crops, image_indexes))):
if num:
formatted_image_text = (
"Here is the original image <image> and here are some crops to help you see better "
+ " ".join(["<image>"] * num)
)
prompt = (
prompt[:idx]
+ formatted_image_text
+ prompt[idx + len("<image>") :]
)
# Expand placeholder image tokens to the full image token sequence
text = [
prompt.replace("<image>", self.full_image_sequence) for prompt in text
]
text_input = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_input, **image_inputs})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["Gemma3Processor"]