in bindings/python/scripts/spm_parity_check.py [0:0]
def check_train(args):
sp = spm.SentencePieceProcessor()
sp.Load(args.model_file)
tokenizer = tokenizers.SentencePieceUnigramTokenizer()
tokenizer.train(args.input_file, show_progress=False)
spm_tokens = 0
tokenizer_tokens = 0
with open(args.input_file, "r") as f:
for i, line in enumerate(f):
line = line.strip()
ids = sp.EncodeAsIds(line)
encoded = tokenizer.encode(line)
spm_tokens += len(ids)
tokenizer_tokens += len(encoded.ids)
vocab = [0 for i in range(args.vocab_size)]
spm_vocab = [0 for i in range(args.vocab_size)]
for token, index in tokenizer.get_vocab().items():
vocab[index] = token
for i in range(args.vocab_size):
spm_vocab[i] = sp.id_to_piece(i)
# 0 is unk in tokenizers, 0, 1, 2 are unk bos, eos in spm by default.
for i, (token, spm_token) in enumerate(zip(vocab[1:], spm_vocab[3:])):
if token != spm_token:
print(f"First different token is token {i} ({token} != {spm_token})")
break
print(f"Tokenizer used {tokenizer_tokens}, where spm used {spm_tokens}")
assert tokenizer_tokens < spm_tokens, "Our trainer should be at least more efficient than the SPM one"
print("Ok our trainer is at least more efficient than the SPM one")