def __init__()

in torchmoji/lstm.py [0:0]


    def __init__(self, input_size, hidden_size,
                 num_layers=1, bias=True, batch_first=False,
                 dropout=0, bidirectional=False):
        super(LSTMHardSigmoid, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.bias = bias
        self.batch_first = batch_first
        self.dropout = dropout
        self.dropout_state = {}
        self.bidirectional = bidirectional
        num_directions = 2 if bidirectional else 1

        gate_size = 4 * hidden_size

        self._all_weights = []
        for layer in range(num_layers):
            for direction in range(num_directions):
                layer_input_size = input_size if layer == 0 else hidden_size * num_directions

                w_ih = Parameter(torch.Tensor(gate_size, layer_input_size))
                w_hh = Parameter(torch.Tensor(gate_size, hidden_size))
                b_ih = Parameter(torch.Tensor(gate_size))
                b_hh = Parameter(torch.Tensor(gate_size))
                layer_params = (w_ih, w_hh, b_ih, b_hh)

                suffix = '_reverse' if direction == 1 else ''
                param_names = ['weight_ih_l{}{}', 'weight_hh_l{}{}']
                if bias:
                    param_names += ['bias_ih_l{}{}', 'bias_hh_l{}{}']
                param_names = [x.format(layer, suffix) for x in param_names]

                for name, param in zip(param_names, layer_params):
                    setattr(self, name, param)
                self._all_weights.append(param_names)

        self.flatten_parameters()
        self.reset_parameters()