def forward()

in torchmoji/attlayer.py [0:0]


    def forward(self, inputs, input_lengths):
        """ Forward pass.

        # Arguments:
            inputs (Torch.Variable): Tensor of input sequences
            input_lengths (torch.LongTensor): Lengths of the sequences

        # Return:
            Tuple with (representations and attentions if self.return_attention else None).
        """
        logits = inputs.matmul(self.attention_vector)
        unnorm_ai = (logits - logits.max()).exp()

        # Compute a mask for the attention on the padded sequences
        # See e.g. https://discuss.pytorch.org/t/self-attention-on-words-and-masking/5671/5
        max_len = unnorm_ai.size(1)
        idxes = torch.arange(0, max_len, out=torch.LongTensor(max_len)).unsqueeze(0)
        mask = Variable((idxes < input_lengths.unsqueeze(1)).float())

        # apply mask and renormalize attention scores (weights)
        masked_weights = unnorm_ai * mask
        att_sums = masked_weights.sum(dim=1, keepdim=True)  # sums per sequence
        attentions = masked_weights.div(att_sums)

        # apply attention weights
        weighted = torch.mul(inputs, attentions.unsqueeze(-1).expand_as(inputs))

        # get the final fixed vector representations of the sentences
        representations = weighted.sum(dim=1)

        return (representations, attentions if self.return_attention else None)