robust-speech-event/run_speech_recognition_ctc_bnb.py [82:131]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    )
    freeze_feature_encoder: bool = field(
        default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
    )
    attention_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
    )
    feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
    hidden_dropout: float = field(
        default=0.0,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )
    final_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout probability for the final projection layer."},
    )
    mask_time_prob: float = field(
        default=0.05,
        metadata={
            "help": (
                "Probability of each feature vector along the time axis to be chosen as the start of the vector "
                "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature "
                "vectors will be masked along the time axis."
            )
        },
    )
    mask_time_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the time axis."},
    )
    mask_feature_prob: float = field(
        default=0.0,
        metadata={
            "help": (
                "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
                " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
                " bins will be masked along the time axis."
            )
        },
    )
    mask_feature_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the feature axis."},
    )
    layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



xtreme-s/run_xtreme_s.py [94:143]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    )
    freeze_feature_encoder: bool = field(
        default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
    )
    attention_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
    )
    feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
    hidden_dropout: float = field(
        default=0.0,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )
    final_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout probability for the final projection layer."},
    )
    mask_time_prob: float = field(
        default=0.05,
        metadata={
            "help": (
                "Probability of each feature vector along the time axis to be chosen as the start of the vector "
                "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature "
                "vectors will be masked along the time axis."
            )
        },
    )
    mask_time_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the time axis."},
    )
    mask_feature_prob: float = field(
        default=0.0,
        metadata={
            "help": (
                "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
                " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
                " bins will be masked along the time axis."
            )
        },
    )
    mask_feature_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the feature axis."},
    )
    layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



