def main()

in xtreme-s/run_xtreme_s.py [0:0]


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 1. First, let's load the dataset
    raw_datasets = DatasetDict()
    task_name = data_args.task
    lang_id = data_args.language

    if task_name is None:
        raise ValueError(
            "Set --task should be set to '<xtreme_s_task>' (e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') "
        )
    if lang_id is None:
        raise ValueError(
            "Set --language should be set to the language id of the sub dataset "
            "config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'"
            " for multi-lingual fine-tuning."
        )
    if data_args.language_group is not None:
        if data_args.task != "fleurs-asr":
            raise ValueError("--language_group should only be used with --task=fleurs-asr")
        if data_args.language != "all":
            raise ValueError("--language_group should only be used with --language=all")

    if data_args.target_column_name is None:
        target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name]
    else:
        target_column_name = data_args.target_column_name

    # here we differentiate between tasks with text as the target and classification tasks
    is_text_target = target_column_name in ("transcription", "translation")

    config_name = ".".join([task_name.split("-")[0], lang_id])

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
            config_name,
            split=data_args.train_split_name,
            token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.audio_column_name not in raw_datasets["train"].column_names:
            raise ValueError(
                f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
                " Make sure to set `--audio_column_name` to the correct audio column - one of"
                f" {', '.join(raw_datasets['train'].column_names)}."
            )

        if target_column_name not in raw_datasets["train"].column_names:
            raise ValueError(
                f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. "
                "Make sure to set `--target_column_name` to the correct text column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}."
            )

        if data_args.max_train_samples is not None:
            raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
            config_name,
            split=data_args.eval_split_name,
            token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))

    if training_args.do_predict:
        raw_datasets["predict"] = load_dataset(
            data_args.dataset_name,
            config_name,
            split=data_args.predict_split_name,
            token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.max_predict_samples is not None:
            raw_datasets["predict"] = raw_datasets["predict"].select(range(data_args.max_predict_samples))

    lang_list = next(iter(raw_datasets.values())).features["lang_id"].names
    if not is_text_target:
        label_list = next(iter(raw_datasets.values())).features[target_column_name].names
        num_labels = len(label_list)

    num_workers = data_args.preprocessing_num_workers

    lang_group = data_args.language_group
    if lang_group is not None:
        with training_args.main_process_first(desc="language group filter"):
            lang_group_id = next(iter(raw_datasets.values())).features["lang_group_id"].str2int(lang_group)
            raw_datasets = raw_datasets.filter(
                lambda lang_group: lang_group == lang_group_id,
                num_proc=num_workers,
                input_columns=["lang_group_id"],
            )

    # 2. We remove some special characters from the datasets
    # that make training complicated and do not help in transcribing the speech
    # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
    # that could be easily picked up by the model
    chars_to_ignore_regex = (
        f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
    )

    def remove_special_characters(batch):
        if chars_to_ignore_regex is not None:
            batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[target_column_name]).lower() + " "
        else:
            batch["target_text"] = batch[target_column_name].lower() + " "
        return batch

    if is_text_target:
        with training_args.main_process_first(desc="dataset map special characters removal"):
            raw_datasets = raw_datasets.map(
                remove_special_characters,
                remove_columns=[target_column_name],
                desc="remove special characters from datasets",
            )

        # save special tokens for tokenizer
        word_delimiter_token = data_args.word_delimiter_token
        unk_token = data_args.unk_token
        pad_token = data_args.pad_token

    # 3. Next, let's load the config as we might need it to create
    # the tokenizer
    config = AutoConfig.from_pretrained(
        model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.use_auth_token
    )

    if is_text_target:
        # 4. (Optional, for ASR and translation) If no tokenizer file is defined,
        # we create the vocabulary of the model by extracting all unique characters from
        # the training and evaluation datasets
        # We need to make sure that only first rank saves vocabulary
        # make sure all processes wait until vocab is created
        tokenizer_name_or_path = model_args.tokenizer_name_or_path
        tokenizer_kwargs = {}
        if tokenizer_name_or_path is None:
            # save vocab in training output dir
            tokenizer_name_or_path = training_args.output_dir

            vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")

            with training_args.main_process_first():
                if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
                    os.remove(vocab_file)

            with training_args.main_process_first(desc="dataset map vocabulary creation"):
                if not os.path.isfile(vocab_file):
                    os.makedirs(tokenizer_name_or_path, exist_ok=True)
                    vocab_dict = create_vocabulary_from_data(
                        raw_datasets,
                        word_delimiter_token=word_delimiter_token,
                        unk_token=unk_token,
                        pad_token=pad_token,
                    )

                    # save vocab dict to be loaded into tokenizer
                    with open(vocab_file, "w") as file:
                        json.dump(vocab_dict, file)

            # if tokenizer has just been created
            # it is defined by `tokenizer_class` if present in config else by `model_type`
            if not config.is_encoder_decoder:
                tokenizer_kwargs = {
                    "config": config if config.tokenizer_class is not None else None,
                    "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
                    "unk_token": unk_token,
                    "pad_token": pad_token,
                    "word_delimiter_token": word_delimiter_token,
                }
            else:
                tokenizer_kwargs = {}

    # 5. Now we can instantiate the feature extractor, tokenizer and model
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.

    # load feature_extractor and tokenizer
    if is_text_target:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            token=data_args.use_auth_token,
            **tokenizer_kwargs,
        )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.use_auth_token
    )

    # adapt config
    # (speech translation requires pre-configured seq2seq models)
    if task_name != "covost2":
        config.update(
            {
                "feat_proj_dropout": model_args.feat_proj_dropout,
                "attention_dropout": model_args.attention_dropout,
                "hidden_dropout": model_args.hidden_dropout,
                "final_dropout": model_args.final_dropout,
                "mask_time_prob": model_args.mask_time_prob,
                "mask_time_length": model_args.mask_time_length,
                "mask_feature_prob": model_args.mask_feature_prob,
                "mask_feature_length": model_args.mask_feature_length,
                "gradient_checkpointing": training_args.gradient_checkpointing,
                "layerdrop": model_args.layerdrop,
                "ctc_zero_infinity": model_args.ctc_zero_infinity,
                "ctc_loss_reduction": model_args.ctc_loss_reduction,
                "activation_dropout": model_args.activation_dropout,
            }
        )
        if training_args.do_train:
            if is_text_target:
                config.pad_token_id = tokenizer.pad_token_id
                config.vocab_size = len(tokenizer)
            else:
                label_to_id = {v: i for i, v in enumerate(label_list)}
                config.label2id = label_to_id
                config.id2label = {id: label for label, id in label_to_id.items()}
                config.num_labels = num_labels

    # create model
    if target_column_name == "transcription":
        model = AutoModelForCTC.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            token=data_args.use_auth_token,
        )
    elif config.is_encoder_decoder:
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            token=data_args.use_auth_token,
        )
        if model.config.decoder_start_token_id is None:
            raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
    else:
        model = AutoModelForAudioClassification.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            token=data_args.use_auth_token,
        )

    # freeze encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`

    # make sure that dataset decodes audio with correct sampling rate
    dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
        )

    # derive max & min input length for sample rate & max duration
    max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
    audio_column_name = data_args.audio_column_name

    # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
    phoneme_language = data_args.phoneme_language

    # Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    def prepare_dataset(batch):
        # load audio
        sample = batch[audio_column_name]

        inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
        batch["input_values"] = inputs.input_values[0]
        batch["length"] = len(batch["input_values"])

        # encode targets
        additional_kwargs = {}
        if phoneme_language is not None:
            additional_kwargs["phonemizer_lang"] = phoneme_language

        if is_text_target:
            batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
        else:
            batch["labels"] = batch[target_column_name]

        batch["lang"] = batch["lang_id"]

        return batch

    with training_args.main_process_first(desc="dataset map preprocessing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=num_workers,
            desc="preprocess datasets",
        )

        if training_args.do_train:

            def is_audio_in_length_range(length):
                return length > min_input_length and length < max_input_length

            # filter data that is shorter than min_input_length
            vectorized_datasets["train"] = vectorized_datasets["train"].filter(
                is_audio_in_length_range,
                num_proc=num_workers,
                input_columns=["length"],
            )

    # 7. Next, we can prepare for the training step.
    # Let's use the appropriate XTREME-S evaluation metric,
    # instantiate a data collator and the trainer

    # Define evaluation metrics during training, *i.e.* word error rate, character error rate
    eval_metric = load_metric("xtreme_s", task_name)

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
        return

    def asr_logits_argmax(logits, labels):
        return logits.argmax(dim=-1)

    def compute_asr_metric(pred):
        pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(pred.predictions)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)

        metric = eval_metric.compute(predictions=pred_str, references=label_str)
        return metric

    def compute_classification_metric(pred):
        pred_ids = np.argmax(pred.predictions, axis=1)
        metric = eval_metric.compute(predictions=pred_ids, references=pred.label_ids)
        return metric

    # Now save everything to be able to create a single processor later
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.output_dir)
        if is_text_target:
            tokenizer.save_pretrained(training_args.output_dir)
        config.save_pretrained(training_args.output_dir)
    # wait until configs are saved in the main process before loading the processor
    if training_args.local_rank != -1:
        torch.distributed.barrier()

    if is_text_target:
        processor = AutoProcessor.from_pretrained(training_args.output_dir)
    else:
        processor = AutoFeatureExtractor.from_pretrained(training_args.output_dir)

    # Instantiate custom data collator
    data_collator = SpeechDataCollatorWithPadding(processor=processor, pad_labels=is_text_target)

    # Initialize Trainer
    if target_column_name == "translation":
        trainer = Seq2SeqTrainer(
            model=model,
            data_collator=data_collator,
            args=training_args,
            preprocess_logits_for_metrics=asr_logits_argmax if training_args.predict_with_generate else None,
            compute_metrics=compute_asr_metric if training_args.predict_with_generate else None,
            train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
            eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
            tokenizer=feature_extractor,
        )
    else:
        trainer = Trainer(
            model=model,
            data_collator=data_collator,
            args=training_args,
            preprocess_logits_for_metrics=asr_logits_argmax if is_text_target else None,
            compute_metrics=compute_asr_metric if is_text_target else compute_classification_metric,
            train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
            eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
            tokenizer=feature_extractor,
        )

    # 8. Finally, we can start training

    # Training
    if training_args.do_train:
        # use last checkpoint if exist
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples
            if data_args.max_train_samples is not None
            else len(vectorized_datasets["train"])
        )
        metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation on the test set
    results = {}
    if training_args.do_predict:
        logger.info(f"*** Evaluating on the `{data_args.predict_split_name}` set ***")
        if data_args.per_lang_metrics:
            # separate the `test` dataset into language-specific subsets and compute metrics for each of them
            metrics = {}
            average_metrics = defaultdict(list)
            for lang_id in range(len(lang_list)):
                lang_name = lang_list[lang_id]
                with training_args.main_process_first(desc="per-language dataset filter"):
                    lang_dataset = vectorized_datasets["predict"].filter(
                        lambda lang: lang == lang_id,
                        num_proc=num_workers,
                        input_columns=["lang"],
                    )
                lang_metrics = trainer.evaluate(lang_dataset)
                redundant_metrics = ["eval_runtime", "eval_samples_per_second", "eval_steps_per_second", "eval_epoch"]
                for metric_name, value in lang_metrics.items():
                    average_metrics[metric_name].append(value)
                    if metric_name not in redundant_metrics:
                        metrics[f"{metric_name}_{lang_name}"] = value
            for metric_name, value in average_metrics.items():
                metrics[metric_name] = np.mean(value)
        else:
            metrics = trainer.evaluate(vectorized_datasets["predict"])
        max_predict_samples = (
            data_args.max_predict_samples
            if data_args.max_predict_samples is not None
            else len(vectorized_datasets["predict"])
        )
        metrics["predict_samples"] = min(max_predict_samples, len(vectorized_datasets["predict"]))

        # make sure that the `predict` metrics end up in the log history for the model card
        trainer.log(OrderedDict(sorted(metrics.items())))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": task_name,
        "tags": [task_name, data_args.dataset_name],
        "dataset_args": (
            f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
            f" {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}"
        ),
        "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
        "language": data_args.language,
    }

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results