in robust-speech-event/run_speech_recognition_ctc_streaming.py [0:0]
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# 1. First, let's load the dataset
raw_datasets = IterableDatasetDict()
raw_column_names = {}
def load_streaming_dataset(split, sampling_rate, **kwargs):
if "+" in split:
dataset_splits = [load_dataset(split=split_name, **kwargs) for split_name in split.split("+")]
# `features` and `cast_column` won't be available after interleaving, so we'll use them here
features = dataset_splits[0].features
# make sure that the dataset decodes audio with a correct sampling rate
dataset_splits = [
dataset.cast_column(data_args.audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate))
for dataset in dataset_splits
]
interleaved_dataset = interleave_datasets(dataset_splits)
return interleaved_dataset, features
else:
dataset = load_dataset(split=split, **kwargs)
features = dataset.features
# make sure that the dataset decodes audio with a correct sampling rate
dataset = dataset.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate)
)
return dataset, features
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate and normalize the input
# via the `feature_extractor`
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.use_auth_token
)
if training_args.do_train:
raw_datasets["train"], train_features = load_streaming_dataset(
path=data_args.dataset_name,
name=data_args.dataset_config_name,
split=data_args.train_split_name,
token=data_args.use_auth_token,
streaming=True,
sampling_rate=feature_extractor.sampling_rate,
)
raw_column_names["train"] = list(train_features.keys())
if data_args.audio_column_name not in raw_column_names["train"]:
raise ValueError(
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
" Make sure to set `--audio_column_name` to the correct audio column - one of"
f" {', '.join(raw_column_names['train'])}."
)
if data_args.text_column_name not in raw_column_names["train"]:
raise ValueError(
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--text_column_name` to the correct text column - one of "
f"{', '.join(raw_column_names['train'])}."
)
if data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].take(range(data_args.max_train_samples))
if training_args.do_eval:
raw_datasets["eval"], eval_features = load_streaming_dataset(
path=data_args.dataset_name,
name=data_args.dataset_config_name,
split=data_args.eval_split_name,
token=data_args.use_auth_token,
streaming=True,
sampling_rate=feature_extractor.sampling_rate,
)
raw_column_names["eval"] = list(eval_features.keys())
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].take(range(data_args.max_eval_samples))
# 2. We remove some special characters from the datasets
# that make training complicated and do not help in transcribing the speech
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
# that could be easily picked up by the model
chars_to_ignore_regex = (
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
)
text_column_name = data_args.text_column_name
def remove_special_characters(batch):
if chars_to_ignore_regex is not None:
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
else:
batch["target_text"] = batch[text_column_name].lower() + " "
return batch
with training_args.main_process_first(desc="dataset map special characters removal"):
for split, dataset in raw_datasets.items():
raw_datasets[split] = dataset.map(
remove_special_characters,
).remove_columns([text_column_name])
# 3. Next, let's load the config as we might need it to create
# the tokenizer
config = AutoConfig.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.use_auth_token
)
# 4. Now we can instantiate the tokenizer and model
# Note for distributed training, the .from_pretrained methods guarantee that only
# one local process can concurrently download model & vocab.
tokenizer_name_or_path = model_args.tokenizer_name_or_path
if tokenizer_name_or_path is None:
raise ValueError(
"Tokenizer has to be created before training in streaming mode. Please specify --tokenizer_name_or_path"
)
# load feature_extractor and tokenizer
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
config=config,
token=data_args.use_auth_token,
)
# adapt config
config.update(
{
"feat_proj_dropout": model_args.feat_proj_dropout,
"attention_dropout": model_args.attention_dropout,
"hidden_dropout": model_args.hidden_dropout,
"final_dropout": model_args.final_dropout,
"mask_time_prob": model_args.mask_time_prob,
"mask_time_length": model_args.mask_time_length,
"mask_feature_prob": model_args.mask_feature_prob,
"mask_feature_length": model_args.mask_feature_length,
"gradient_checkpointing": training_args.gradient_checkpointing,
"layerdrop": model_args.layerdrop,
"ctc_loss_reduction": model_args.ctc_loss_reduction,
"pad_token_id": tokenizer.pad_token_id,
"vocab_size": len(tokenizer),
"activation_dropout": model_args.activation_dropout,
}
)
# create model
model = AutoModelForCTC.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
config=config,
token=data_args.use_auth_token,
)
# freeze encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
# 5. Now we preprocess the datasets including loading the audio, resampling and normalization
audio_column_name = data_args.audio_column_name
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
phoneme_language = data_args.phoneme_language
# Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
def prepare_dataset(batch):
# load audio
sample = batch[audio_column_name]
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
batch["input_values"] = inputs.input_values[0]
batch["input_length"] = len(batch["input_values"])
# encode targets
additional_kwargs = {}
if phoneme_language is not None:
additional_kwargs["phonemizer_lang"] = phoneme_language
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
return batch
vectorized_datasets = IterableDatasetDict()
with training_args.main_process_first(desc="dataset map preprocessing"):
for split, dataset in raw_datasets.items():
vectorized_datasets[split] = (
dataset.map(prepare_dataset)
.remove_columns(raw_column_names[split] + ["target_text"])
.with_format("torch")
)
if split == "train":
vectorized_datasets[split] = vectorized_datasets[split].shuffle(
buffer_size=data_args.shuffle_buffer_size,
seed=training_args.seed,
)
# 6. Next, we can prepare the training.
# Let's use word error rate (WER) as our evaluation metric,
# instantiate a data collator and the trainer
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
pred_str = tokenizer.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
return metrics
# Now save everything to be able to create a single processor later
if is_main_process(training_args.local_rank):
# save feature extractor, tokenizer and config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
try:
processor = AutoProcessor.from_pretrained(training_args.output_dir)
except (OSError, KeyError):
warnings.warn(
"Loading a processor from a feature extractor config that does not"
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
" attribute to your `preprocessor_config.json` file to suppress this warning: "
" `'processor_class': 'Wav2Vec2Processor'`",
FutureWarning,
)
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
# Instantiate custom data collator
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
data_collator = DataCollatorCTCWithPadding(processor=processor, max_length=max_input_length)
# trainer callback to reinitialize and reshuffle the streamable datasets at the beginning of each epoch
class ShuffleCallback(TrainerCallback):
def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
if isinstance(train_dataloader.dataset, IterableDatasetShard):
pass # set_epoch() is handled by the Trainer
elif isinstance(train_dataloader.dataset, IterableDataset):
train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
# Initialize Trainer
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
tokenizer=processor,
callbacks=[ShuffleCallback()],
)
# 7. Finally, we can start training
# Training
if training_args.do_train:
# use last checkpoint if exist
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
metrics = train_result.metrics
if data_args.max_train_samples:
metrics["train_samples"] = data_args.max_train_samples
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
if data_args.max_eval_samples:
metrics["eval_samples"] = data_args.max_eval_samples
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Write model card and (optionally) push to hub
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "automatic-speech-recognition",
"tags": ["automatic-speech-recognition", data_args.dataset_name],
"dataset_args": (
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
f" {data_args.eval_split_name}"
),
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
}
if "common_voice" in data_args.dataset_name:
kwargs["language"] = config_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
return results