def __init__()

in rag/finetune_rag.py [0:0]


    def __init__(self, hparams, **kwargs):
        # when loading from a pytorch lightning checkpoint, hparams are passed as dict
        if isinstance(hparams, dict):
            hparams = AttrDict(hparams)
        if hparams.model_type == "rag_sequence":
            self.model_class = RagSequenceForGeneration
        elif hparams.model_type == "rag_token":
            self.model_class = RagTokenForGeneration
        elif hparams.model_type == "bart":
            self.model_class = BartForConditionalGeneration
        else:
            self.model_class = T5ForConditionalGeneration
        self.is_rag_model = is_rag_model(hparams.model_type)

        config_class = RagConfig if self.is_rag_model else AutoConfig
        config = config_class.from_pretrained(hparams.model_name_or_path)

        # set retriever parameters
        config.index_name = hparams.index_name or config.index_name
        config.passages_path = hparams.passages_path or config.passages_path
        config.index_path = hparams.index_path or config.index_path
        config.use_dummy_dataset = hparams.use_dummy_dataset

        # set extra_model_params for generator configs and load_model
        extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout")
        if self.is_rag_model:
            if hparams.prefix is not None:
                config.generator.prefix = hparams.prefix
            config.label_smoothing = hparams.label_smoothing
            hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator)
            if hparams.distributed_retriever == "pytorch":
                retriever = RagPyTorchDistributedRetriever.from_pretrained(hparams.model_name_or_path, config=config)
            elif hparams.distributed_retriever == "ray":
                # The Ray retriever needs the handles to the retriever actors.
                retriever = RagRayDistributedRetriever.from_pretrained(
                    hparams.model_name_or_path, hparams.actor_handles, config=config
                )
            model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever)
            prefix = config.question_encoder.prefix
        else:
            if hparams.prefix is not None:
                config.prefix = hparams.prefix
            hparams, config = set_extra_model_params(extra_model_params, hparams, config)
            model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config)
            prefix = config.prefix

        tokenizer = (
            RagTokenizer.from_pretrained(hparams.model_name_or_path)
            if self.is_rag_model
            else AutoTokenizer.from_pretrained(hparams.model_name_or_path)
        )

        super().__init__(hparams, config=config, tokenizer=tokenizer, model=model)

        save_git_info(self.hparams.output_dir)
        self.output_dir = Path(self.hparams.output_dir)
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
        pickle_save(self.hparams, self.hparams_save_path)
        self.step_count = 0
        self.metrics = defaultdict(list)

        self.dataset_kwargs: dict = {
            "data_dir": self.hparams.data_dir,
            "max_source_length": self.hparams.max_source_length,
            "prefix": prefix or "",
        }
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"

        self.hparams.git_sha = get_git_info()["repo_sha"]
        self.num_workers = hparams.num_workers
        self.distributed_port = self.hparams.distributed_port

        # For single GPU training, init_ddp_connection is not called.
        # So we need to initialize the retrievers here.
        if hparams.gpus <= 1:
            if hparams.distributed_retriever == "ray":
                self.model.retriever.init_retrieval()
            elif hparams.distributed_retriever == "pytorch":
                self.model.retriever.init_retrieval(self.distributed_port)

        self.distributed_retriever = hparams.distributed_retriever