onnx/summarization/bart_onnx/generation_onnx.py (566 lines of code) (raw):

import copy import itertools from typing import List, Optional, Tuple import torch import torch.nn.functional as F from transformers import BartConfig from transformers.generation import GenerationMixin def _convert_past_list_to_tuple(past_key_values): """ In Bart model, the type of past_key_values is tuple(tuple(torch.FloatTensor)) which is not TorchScript-compatible. To support this, we have to convert it during the export process. This function will convert past values from a list to tuple(tuple(torch.FloatTensor)) for the inner decoder. According to the definition of past_key_values, each inner tuple(torch.FloatTensor) has 4 tensors, so we convert every 4 elements in the list as a tuple(torch.FloatTensor). """ count_of_each_inner_tuple = 4 results = () temp_result = () count_n = len(past_key_values) // count_of_each_inner_tuple for idx in range(count_n): real_idx = idx * count_of_each_inner_tuple temp_result = tuple(past_key_values[real_idx : real_idx + count_of_each_inner_tuple]) results += ((temp_result),) return results class EncoderForONNX(torch.nn.Module): def __init__(self, encoder): super().__init__() self.encoder = encoder def forward(self, input_ids, attention_mask): return self.encoder( input_ids=input_ids, attention_mask=attention_mask, return_dict=False, ) class DecoderForONNX(torch.nn.Module): def __init__(self, decoder): super().__init__() self.decoder = decoder def forward(self, input_ids, encoder_state, attention_mask, past=None): all_results = None if past is not None: all_results = _convert_past_list_to_tuple(past) input_ids = input_ids[:, -1:] last_hidden_state, past_key_values = self.decoder( input_ids=input_ids, encoder_hidden_states=encoder_state, encoder_attention_mask=attention_mask, past_key_values=all_results, return_dict=False, ) past_values = [] for past in past_key_values: past_values = past_values + list(past) return last_hidden_state, past_values def _create_traced_encoder(encoder, input_ids, attention_mask): encoder_c = copy.deepcopy(encoder) encoder_for_onnx = EncoderForONNX(encoder_c) return torch.jit.trace(encoder_for_onnx, (input_ids, attention_mask)) def _create_traced_decoder(decoder, input_ids, encoder_state, attention_mask, past=None): decoder_c = copy.deepcopy(decoder) decoder_for_onnx = DecoderForONNX(decoder_c) past_values = list(itertools.chain.from_iterable(past or ())) # Do this twice so we got 2 different decoders for further work. if past_values: return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask, past_values)) else: return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask)) class BartConfigTS(BartConfig, torch.nn.Module): """ BartConfigTS is a TorchScript-compatible transformers.models.bart.configuration_bart.BartConfig. TorchScript only supports sub-classes of torch.nn.Module. """ def __init__(self, config): BartConfig.__init__(self, config) torch.nn.Module.__init__(self) class MinLengthLogitsProcessorTS(torch.nn.Module): r""" :class:`transformers.LogitsProcessor` enforcing a min-length by setting EOS probability to 0. Args: min_length (:obj:`int`): The minimum length below which the score of :obj:`eos_token_id` is set to :obj:`-float("Inf")`. eos_token_id (:obj:`int`): The id of the `end-of-sequence` token. """ def __init__(self, min_length: int, eos_token_id: int): super().__init__() if not isinstance(min_length, int) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") self.min_length = min_length self.eos_token_id = eos_token_id def forward(self, input_ids, scores) -> torch.Tensor: cur_len = input_ids.shape[-1] if cur_len < self.min_length: scores[:, self.eos_token_id] = -float("inf") return scores class BARTGenerator(torch.nn.Module, GenerationMixin): def __init__(self, model): super().__init__() self.config = BartConfigTS(model.config) self.config.force_bos_token_to_be_generated = False self._trace_modules(model) self.logits_processor = MinLengthLogitsProcessorTS(self.config.min_length, self.config.eos_token_id) self.final_logits_weight = model.model.shared.weight self.final_logits_bias = model.final_logits_bias self.decoder_layers = model.config.decoder_layers def _trace_modules(self, model): input_ids = torch.tensor( [ [ 19, 669, 18, 420, 8, 664, 57, 42, 8, 664, 21, 3028, 195, 4445, 331, 1293, 34, 21, 10, 6174, 1100, 6, 69, 104, 42, 32, 2621, 1638, 144, 4, 6174, 558, 108, 4419, 1091, 28, 4, 1668, 9, 1509, 1621, 279, 35, 867, 2734, 85, 11, 2216, 2734, 85, 203, 2244, 7, 6, 15, 8102, 7, 57, 8629, 5, model.config.eos_token_id, ] ], device=model.device, dtype=torch.long, ) attention_mask = torch.tensor( [[True] * input_ids.shape[-1]], device=model.device, dtype=torch.bool, ) self.encoder = _create_traced_encoder(model.get_encoder(), input_ids, attention_mask) encoder_outputs = model.get_encoder()(input_ids, attention_mask=attention_mask, return_dict=True) decoder = model.model.decoder decoder_outputs = decoder(input_ids, attention_mask, encoder_outputs["last_hidden_state"], None, None, None) self.decoder_no_past = _create_traced_decoder( model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask ) self.decoder_with_past = _create_traced_decoder( model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask, decoder_outputs[1] ) def _encoder_forward(self, input_ids, attention_mask): return self.encoder(input_ids, attention_mask)[0] @staticmethod def _init_sequence_length_for_generation( input_ids: torch.LongTensor, max_length: int ) -> Tuple[torch.Tensor, torch.Tensor, int]: unfinished_sequences = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + 1 sequence_lengths = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + max_length cur_len = input_ids.shape[-1] return sequence_lengths, unfinished_sequences, cur_len def _decoder_forward(self, input_ids, encoder_output, attention_mask, past: List[torch.Tensor]): # Update here to use different decoder for different values of past. if past is None or len(past) == 0: decoder_output, past = self.decoder_no_past( input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask ) else: decoder_output, past = self.decoder_with_past( input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask, past=past ) lm_logits = F.linear(decoder_output, self.final_logits_weight, bias=self.final_logits_bias) return lm_logits, past def greedy_search( self, input_ids, encoder_output, attention_mask, max_length, pad_token_id: int, eos_token_id: int ): # init sequence length tensors sequence_lengths, unfinished_sequences, cur_len = self._init_sequence_length_for_generation( input_ids, max_length ) past: List[torch.Tensor] = [] while cur_len < max_length: logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past) next_token_logits = logits[:, -1, :] # pre-process distribution scores = self.logits_processor(input_ids, next_token_logits) # argmax next_tokens = torch.argmax(scores, dim=-1) # add code that transfomers next_tokens to tokens_to_add if eos_token_id is not None: assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined." next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences) # add token and increase length by one input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) # update sequence length if eos_token_id is not None: sequence_lengths, unfinished_sequences = self._update_seq_length_for_generation( sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id ) # stop when there is a </s> in each sentence, or if we exceed the maximul length if unfinished_sequences.max() == 0: break # increase cur_len cur_len = cur_len + 1 return input_ids def _prepare_decoder_input_ids_for_generation( self, input_ids: torch.LongTensor, decoder_start_token_id, bos_token_id: Optional[int] = None, ) -> torch.LongTensor: decoder_input_ids = ( torch.ones((input_ids.shape[0], 1), dtype=input_ids.dtype, device=input_ids.device) * decoder_start_token_id ) return decoder_input_ids def forward(self, input_ids, attention_mask, max_length, decoder_start_token_id): pad_token_id = self.config.pad_token_id bos_token_id = self.config.bos_token_id eos_token_id = self.config.eos_token_id # special case if pad_token_id is not defined if pad_token_id is None and eos_token_id is not None: # Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation. pad_token_id = eos_token_id encoder_output = self._encoder_forward(input_ids, attention_mask) input_ids = self._prepare_decoder_input_ids_for_generation( input_ids, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, ) return self.greedy_search( input_ids, encoder_output, attention_mask, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) # TorchScript compatible BeamSearchScorer class BeamSearchScorerTS(torch.nn.Module): def __init__(self): super().__init__() self.max_length: int = 200 self.num_beams: int = 3 self.batch_size: int = 1 self.length_penalty: float = 1.0 self.do_early_stopping: bool = True self.num_beam_hyps_to_keep: int = 1 self.num_beam_groups: int = 1 self.group_size: int = self.num_beams // self.num_beam_groups self._done = torch.zeros(self.batch_size, dtype=torch.bool) self._beam_hyps_count = torch.zeros(self.batch_size, dtype=torch.long) self._beam_hyps_worst_scores = torch.zeros(self.batch_size) + 1e9 self._beam_hyps_max_length: int = self.max_length - 1 self._beam_hyps: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility self._beam_scores: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility def is_done(self) -> torch.Tensor: return self._done.all() def init( self, batch_size: int, max_length: int, num_beams: int, device: torch.device, length_penalty: float = 1.0, do_early_stopping: bool = False, num_beam_hyps_to_keep: int = 1, num_beam_groups: int = 1, ): self.max_length = max_length self.num_beams = num_beams self.batch_size = batch_size self.length_penalty = length_penalty self.do_early_stopping = do_early_stopping self.num_beam_hyps_to_keep = num_beam_hyps_to_keep self.num_beam_groups = num_beam_groups self.group_size = self.num_beams // self.num_beam_groups # NOTE: TorchScript does not support List of Modules # Rewritten BeamHypotheses with tensors and list of tensors. self._done = torch.zeros(batch_size, dtype=torch.bool, device=device) self._beam_hyps_count = torch.zeros(batch_size, dtype=torch.long, device=device) self._beam_hyps_worst_scores = torch.zeros(batch_size, device=device) + 1e9 self._beam_hyps = [] self._beam_scores = [] self._beam_hyps_max_length = max_length - 1 # ignoring bos_token if not isinstance(num_beams, int) or num_beams <= 1: raise ValueError( f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1," " one should make use of `greedy_search` instead." ) if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0): raise ValueError( "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be" f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}." ) def hypo_len(self, hypo_idx: int): """ Number of hypotheses in the list. """ return self._beam_hyps_count[hypo_idx] def hypo_add(self, hyp: torch.Tensor, sum_logprobs: float, hypo_idx: int): """ Add a new hypothesis to the list. """ score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty) hyps_count = self.hypo_len(hypo_idx) if hyps_count < self.num_beams or score > self._beam_hyps_worst_scores[hypo_idx]: # NOTE: work around difference of torch.sum(empty_tensor) == 0, while error in onnx. # Bug: https://msdata.visualstudio.com/Vienna/_workitems/edit/1486599 beam_idx = ( torch.sum(self._beam_hyps_count[:hypo_idx]) if hypo_idx != 0 else torch.tensor(0, dtype=torch.long) ) self._beam_scores.insert(beam_idx, torch.tensor([score])) self._beam_hyps.insert(beam_idx, hyp) if hyps_count + 1 > self.num_beams: sorted_next_scores, sorted_indices = torch.topk( torch.cat(self._beam_scores)[beam_idx : beam_idx + hyps_count + 1], hyps_count + 1, largest=False ) del self._beam_hyps[int((sorted_indices[0] + beam_idx))] del self._beam_scores[int((sorted_indices[0] + beam_idx))] self._beam_hyps_worst_scores[hypo_idx] = sorted_next_scores[1] else: self._beam_hyps_worst_scores[hypo_idx] = min(score, self._beam_hyps_worst_scores[hypo_idx]) self._beam_hyps_count[hypo_idx] = hyps_count + 1 def hypo_is_done(self, hypo_idx: int, best_sum_logprobs: float, cur_len: int) -> bool: """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if self.hypo_len(hypo_idx) < self.num_beams: return False elif self.do_early_stopping: return True else: cur_score = best_sum_logprobs / cur_len**self.length_penalty ret = self._beam_hyps_worst_scores[hypo_idx].item() >= cur_score return ret def process( self, input_ids: torch.Tensor, next_scores: torch.Tensor, next_tokens: torch.Tensor, next_indices: torch.Tensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: cur_len = input_ids.shape[-1] batch_size = len(self._beam_hyps_count) assert batch_size == (input_ids.shape[0] // self.group_size) device = input_ids.device next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device) next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device) next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device) for batch_idx in range(batch_size): if self._done[batch_idx]: assert ( self.hypo_len(batch_idx) >= self.num_beams ), "Batch can only be done if at least {} beams have been generated".format(self.num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" # pad the batch next_beam_scores[batch_idx, :] = 0 next_beam_tokens[batch_idx, :] = pad_token_id next_beam_indices[batch_idx, :] = 0 continue # next tokens for this sentence beam_idx = 0 for beam_token_rank, (next_token, next_score, next_index) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx]) ): batch_beam_idx = batch_idx * self.group_size + next_index # add to generated hypotheses if end of sentence if (eos_token_id is not None) and (next_token == eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size if is_beam_token_worse_than_top_num_beams: continue self.hypo_add( input_ids[batch_beam_idx].clone(), next_score.item(), batch_idx, ) else: # add next predicted token since it is not eos_token next_beam_scores[batch_idx, beam_idx] = next_score next_beam_tokens[batch_idx, beam_idx] = next_token next_beam_indices[batch_idx, beam_idx] = batch_beam_idx beam_idx += 1 # once the beam for next step is full, don't add more tokens to it. if beam_idx == self.group_size: break if beam_idx < self.group_size: raise ValueError( f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:" f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected." ) # Check if we are done so that we can save a pad step if all(done) self._done[batch_idx] = self._done[batch_idx] or self.hypo_is_done( batch_idx, next_scores[batch_idx].max().item(), cur_len, ) return next_beam_scores.view(-1), next_beam_tokens.view(-1), next_beam_indices.view(-1) def finalize( self, input_ids: torch.Tensor, final_beam_scores: torch.Tensor, final_beam_tokens: torch.Tensor, final_beam_indices: torch.Tensor, pad_token_id: int, eos_token_id: int, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = len(self._beam_hyps_count) # finalize all open beam hypotheses and add to generated hypotheses for batch_idx in range(batch_size): if self._done[batch_idx]: continue # all open beam hypotheses are added to the beam hypothesis # beam hypothesis class automatically keeps the best beams for beam_id in range(self.num_beams): batch_beam_idx = batch_idx * self.num_beams + beam_id final_score = final_beam_scores[batch_beam_idx].item() final_tokens = input_ids[batch_beam_idx] self.hypo_add(final_tokens, final_score, batch_idx) # select the best hypotheses # NOTE: torch.Tensor.new_zeros() is not scriptable sent_lengths = torch.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=torch.long) best = [] best_scores = torch.zeros( batch_size * self.num_beam_hyps_to_keep, device=input_ids.device, dtype=torch.float32 ) # retrieve best hypotheses for i in range(batch_size): # NOTE: lambda is not scriptable batch_hypo_start = torch.sum(self._beam_hyps_count[:i]) if i > 0 else torch.tensor(0, dtype=torch.long) batch_hypo_end = torch.sum(self._beam_hyps_count[: i + 1]) beam_scores = torch.cat(self._beam_scores)[batch_hypo_start:batch_hypo_end] sorted_next_scores, sorted_indices = torch.topk(beam_scores, len(beam_scores), largest=True) for j in range(self.num_beam_hyps_to_keep): best_score = beam_scores[sorted_indices[j]] best_hyp = self._beam_hyps[batch_hypo_start + sorted_indices[j]] sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp) # append to lists best.append(best_hyp) best_scores[i * self.num_beam_hyps_to_keep + j] = best_score # prepare for adding eos sent_max_len = min(sent_lengths.max() + 1, self.max_length) decoded = torch.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=torch.long) # shorter batches are padded if needed if sent_lengths.min() != sent_lengths.max(): assert pad_token_id is not None, "`pad_token_id` has to be defined" decoded.fill_(pad_token_id) # fill with hypotheses and eos_token_id if the latter fits in for i, hypo in enumerate(best): decoded[i, : sent_lengths[i]] = hypo if sent_lengths[i] < self.max_length: decoded[i, sent_lengths[i]] = eos_token_id return decoded, best_scores class BARTBeamSearchGenerator(BARTGenerator): def __init__(self, model): super().__init__(model) self.beam_scorer = BeamSearchScorerTS() self.device = model.device @staticmethod def _expand_inputs_for_generation( input_ids: torch.Tensor, attention_mask: torch.Tensor, last_hidden_state: torch.Tensor, expand_size: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: expanded_return_idx = ( torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device) ) input_ids = input_ids.index_select(0, expanded_return_idx) attention_mask = attention_mask.index_select(0, expanded_return_idx) last_hidden_state = last_hidden_state.index_select(0, expanded_return_idx.to(last_hidden_state.device)) return input_ids, attention_mask, last_hidden_state def adjust_logits_during_generation(self, logits, cur_len: int, max_length: int): if cur_len == 1 and self.config.force_bos_token_to_be_generated: logits = self._force_token_id_to_be_generated(logits, self.config.bos_token_id) elif cur_len == max_length - 1 and self.config.eos_token_id is not None: logits = self._force_token_id_to_be_generated(logits, self.config.eos_token_id) return logits @staticmethod def _force_token_id_to_be_generated(scores, token_id: int): """force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))""" mask = torch.full_like(scores, 1, dtype=torch.bool) mask[:, token_id] = False return scores.masked_fill(mask, -float("inf")) def _reorder_cache(self, past: List[torch.Tensor], beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder reordered_decoder_past = [] for state in past: reordered_decoder_past.append(state.index_select(0, beam_idx)) return reordered_decoder_past def beam_search( self, input_ids, encoder_output, attention_mask, num_beams, max_length, pad_token_id: int, eos_token_id: int ): batch_size = self.beam_scorer.batch_size num_beams = self.beam_scorer.num_beams batch_beam_size, cur_len = input_ids.shape assert ( num_beams * batch_size == batch_beam_size ), f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view((batch_size * num_beams,)) next_tokens = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device) next_indices = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device) past: List[torch.Tensor] = [] while cur_len < max_length: logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past) next_token_logits = logits[:, -1, :] # adjust tokens for Bart, *e.g.* next_token_logits = self.adjust_logits_during_generation( next_token_logits, cur_len=cur_len, max_length=max_length ) next_token_scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size) # pre-process distribution next_token_scores = self.logits_processor(input_ids, next_token_scores) next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores) # reshape for beam search vocab_size = next_token_scores.shape[-1] next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) next_token_scores, next_tokens = torch.topk( next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True ) next_indices = next_tokens // vocab_size next_tokens = next_tokens % vocab_size beam_scores, beam_next_tokens, beam_idx = self.beam_scorer.process( input_ids, next_token_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) cur_len = cur_len + 1 if len(past) > 0: past = self._reorder_cache(past, beam_idx) if self.beam_scorer.is_done(): break sequences, sequence_scores = self.beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, ) return sequences def forward(self, input_ids, attention_mask, num_beams, max_length, decoder_start_token_id): pad_token_id = self.config.pad_token_id bos_token_id = self.config.bos_token_id eos_token_id = self.config.eos_token_id # special case if pad_token_id is not defined if pad_token_id is None and eos_token_id is not None: # logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") pad_token_id = eos_token_id encoder_output = self._encoder_forward(input_ids, attention_mask) input_ids = self._prepare_decoder_input_ids_for_generation( input_ids, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id, ) batch_size = input_ids.shape[0] length_penalty = self.config.length_penalty num_return_sequences = self.config.num_return_sequences early_stopping = True self.beam_scorer.init( batch_size=batch_size, max_length=max_length, num_beams=num_beams, device=self.device, length_penalty=length_penalty, do_early_stopping=early_stopping, num_beam_hyps_to_keep=num_return_sequences, ) input_ids, attention_mask, encoder_output = self._expand_inputs_for_generation( input_ids, attention_mask, encoder_output, expand_size=num_beams, ) return self.beam_search( input_ids=input_ids, encoder_output=encoder_output, attention_mask=attention_mask, num_beams=num_beams, max_length=max_length, pad_token_id=pad_token_id, eos_token_id=eos_token_id, )