onnx/summarization/bart_onnx/generation_onnx.py (566 lines of code) (raw):
import copy
import itertools
from typing import List, Optional, Tuple
import torch
import torch.nn.functional as F
from transformers import BartConfig
from transformers.generation import GenerationMixin
def _convert_past_list_to_tuple(past_key_values):
"""
In Bart model, the type of past_key_values is tuple(tuple(torch.FloatTensor)) which is not
TorchScript-compatible. To support this, we have to convert it during the export process.
This function will convert past values from a list to tuple(tuple(torch.FloatTensor)) for
the inner decoder.
According to the definition of past_key_values, each inner tuple(torch.FloatTensor) has 4 tensors,
so we convert every 4 elements in the list as a tuple(torch.FloatTensor).
"""
count_of_each_inner_tuple = 4
results = ()
temp_result = ()
count_n = len(past_key_values) // count_of_each_inner_tuple
for idx in range(count_n):
real_idx = idx * count_of_each_inner_tuple
temp_result = tuple(past_key_values[real_idx : real_idx + count_of_each_inner_tuple])
results += ((temp_result),)
return results
class EncoderForONNX(torch.nn.Module):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, input_ids, attention_mask):
return self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=False,
)
class DecoderForONNX(torch.nn.Module):
def __init__(self, decoder):
super().__init__()
self.decoder = decoder
def forward(self, input_ids, encoder_state, attention_mask, past=None):
all_results = None
if past is not None:
all_results = _convert_past_list_to_tuple(past)
input_ids = input_ids[:, -1:]
last_hidden_state, past_key_values = self.decoder(
input_ids=input_ids,
encoder_hidden_states=encoder_state,
encoder_attention_mask=attention_mask,
past_key_values=all_results,
return_dict=False,
)
past_values = []
for past in past_key_values:
past_values = past_values + list(past)
return last_hidden_state, past_values
def _create_traced_encoder(encoder, input_ids, attention_mask):
encoder_c = copy.deepcopy(encoder)
encoder_for_onnx = EncoderForONNX(encoder_c)
return torch.jit.trace(encoder_for_onnx, (input_ids, attention_mask))
def _create_traced_decoder(decoder, input_ids, encoder_state, attention_mask, past=None):
decoder_c = copy.deepcopy(decoder)
decoder_for_onnx = DecoderForONNX(decoder_c)
past_values = list(itertools.chain.from_iterable(past or ()))
# Do this twice so we got 2 different decoders for further work.
if past_values:
return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask, past_values))
else:
return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask))
class BartConfigTS(BartConfig, torch.nn.Module):
"""
BartConfigTS is a TorchScript-compatible transformers.models.bart.configuration_bart.BartConfig.
TorchScript only supports sub-classes of torch.nn.Module.
"""
def __init__(self, config):
BartConfig.__init__(self, config)
torch.nn.Module.__init__(self)
class MinLengthLogitsProcessorTS(torch.nn.Module):
r"""
:class:`transformers.LogitsProcessor` enforcing a min-length by setting EOS probability to 0.
Args:
min_length (:obj:`int`):
The minimum length below which the score of :obj:`eos_token_id` is set to :obj:`-float("Inf")`.
eos_token_id (:obj:`int`):
The id of the `end-of-sequence` token.
"""
def __init__(self, min_length: int, eos_token_id: int):
super().__init__()
if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}")
if not isinstance(eos_token_id, int) or eos_token_id < 0:
raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}")
self.min_length = min_length
self.eos_token_id = eos_token_id
def forward(self, input_ids, scores) -> torch.Tensor:
cur_len = input_ids.shape[-1]
if cur_len < self.min_length:
scores[:, self.eos_token_id] = -float("inf")
return scores
class BARTGenerator(torch.nn.Module, GenerationMixin):
def __init__(self, model):
super().__init__()
self.config = BartConfigTS(model.config)
self.config.force_bos_token_to_be_generated = False
self._trace_modules(model)
self.logits_processor = MinLengthLogitsProcessorTS(self.config.min_length, self.config.eos_token_id)
self.final_logits_weight = model.model.shared.weight
self.final_logits_bias = model.final_logits_bias
self.decoder_layers = model.config.decoder_layers
def _trace_modules(self, model):
input_ids = torch.tensor(
[
[
19,
669,
18,
420,
8,
664,
57,
42,
8,
664,
21,
3028,
195,
4445,
331,
1293,
34,
21,
10,
6174,
1100,
6,
69,
104,
42,
32,
2621,
1638,
144,
4,
6174,
558,
108,
4419,
1091,
28,
4,
1668,
9,
1509,
1621,
279,
35,
867,
2734,
85,
11,
2216,
2734,
85,
203,
2244,
7,
6,
15,
8102,
7,
57,
8629,
5,
model.config.eos_token_id,
]
],
device=model.device,
dtype=torch.long,
)
attention_mask = torch.tensor(
[[True] * input_ids.shape[-1]],
device=model.device,
dtype=torch.bool,
)
self.encoder = _create_traced_encoder(model.get_encoder(), input_ids, attention_mask)
encoder_outputs = model.get_encoder()(input_ids, attention_mask=attention_mask, return_dict=True)
decoder = model.model.decoder
decoder_outputs = decoder(input_ids, attention_mask, encoder_outputs["last_hidden_state"], None, None, None)
self.decoder_no_past = _create_traced_decoder(
model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask
)
self.decoder_with_past = _create_traced_decoder(
model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask, decoder_outputs[1]
)
def _encoder_forward(self, input_ids, attention_mask):
return self.encoder(input_ids, attention_mask)[0]
@staticmethod
def _init_sequence_length_for_generation(
input_ids: torch.LongTensor, max_length: int
) -> Tuple[torch.Tensor, torch.Tensor, int]:
unfinished_sequences = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + 1
sequence_lengths = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + max_length
cur_len = input_ids.shape[-1]
return sequence_lengths, unfinished_sequences, cur_len
def _decoder_forward(self, input_ids, encoder_output, attention_mask, past: List[torch.Tensor]):
# Update here to use different decoder for different values of past.
if past is None or len(past) == 0:
decoder_output, past = self.decoder_no_past(
input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask
)
else:
decoder_output, past = self.decoder_with_past(
input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask, past=past
)
lm_logits = F.linear(decoder_output, self.final_logits_weight, bias=self.final_logits_bias)
return lm_logits, past
def greedy_search(
self, input_ids, encoder_output, attention_mask, max_length, pad_token_id: int, eos_token_id: int
):
# init sequence length tensors
sequence_lengths, unfinished_sequences, cur_len = self._init_sequence_length_for_generation(
input_ids, max_length
)
past: List[torch.Tensor] = []
while cur_len < max_length:
logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past)
next_token_logits = logits[:, -1, :]
# pre-process distribution
scores = self.logits_processor(input_ids, next_token_logits)
# argmax
next_tokens = torch.argmax(scores, dim=-1)
# add code that transfomers next_tokens to tokens_to_add
if eos_token_id is not None:
assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined."
next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences)
# add token and increase length by one
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
# update sequence length
if eos_token_id is not None:
sequence_lengths, unfinished_sequences = self._update_seq_length_for_generation(
sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id
)
# stop when there is a </s> in each sentence, or if we exceed the maximul length
if unfinished_sequences.max() == 0:
break
# increase cur_len
cur_len = cur_len + 1
return input_ids
def _prepare_decoder_input_ids_for_generation(
self,
input_ids: torch.LongTensor,
decoder_start_token_id,
bos_token_id: Optional[int] = None,
) -> torch.LongTensor:
decoder_input_ids = (
torch.ones((input_ids.shape[0], 1), dtype=input_ids.dtype, device=input_ids.device)
* decoder_start_token_id
)
return decoder_input_ids
def forward(self, input_ids, attention_mask, max_length, decoder_start_token_id):
pad_token_id = self.config.pad_token_id
bos_token_id = self.config.bos_token_id
eos_token_id = self.config.eos_token_id
# special case if pad_token_id is not defined
if pad_token_id is None and eos_token_id is not None:
# Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.
pad_token_id = eos_token_id
encoder_output = self._encoder_forward(input_ids, attention_mask)
input_ids = self._prepare_decoder_input_ids_for_generation(
input_ids,
decoder_start_token_id=decoder_start_token_id,
bos_token_id=bos_token_id,
)
return self.greedy_search(
input_ids,
encoder_output,
attention_mask,
max_length=max_length,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
# TorchScript compatible BeamSearchScorer
class BeamSearchScorerTS(torch.nn.Module):
def __init__(self):
super().__init__()
self.max_length: int = 200
self.num_beams: int = 3
self.batch_size: int = 1
self.length_penalty: float = 1.0
self.do_early_stopping: bool = True
self.num_beam_hyps_to_keep: int = 1
self.num_beam_groups: int = 1
self.group_size: int = self.num_beams // self.num_beam_groups
self._done = torch.zeros(self.batch_size, dtype=torch.bool)
self._beam_hyps_count = torch.zeros(self.batch_size, dtype=torch.long)
self._beam_hyps_worst_scores = torch.zeros(self.batch_size) + 1e9
self._beam_hyps_max_length: int = self.max_length - 1
self._beam_hyps: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility
self._beam_scores: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility
def is_done(self) -> torch.Tensor:
return self._done.all()
def init(
self,
batch_size: int,
max_length: int,
num_beams: int,
device: torch.device,
length_penalty: float = 1.0,
do_early_stopping: bool = False,
num_beam_hyps_to_keep: int = 1,
num_beam_groups: int = 1,
):
self.max_length = max_length
self.num_beams = num_beams
self.batch_size = batch_size
self.length_penalty = length_penalty
self.do_early_stopping = do_early_stopping
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
self.num_beam_groups = num_beam_groups
self.group_size = self.num_beams // self.num_beam_groups
# NOTE: TorchScript does not support List of Modules
# Rewritten BeamHypotheses with tensors and list of tensors.
self._done = torch.zeros(batch_size, dtype=torch.bool, device=device)
self._beam_hyps_count = torch.zeros(batch_size, dtype=torch.long, device=device)
self._beam_hyps_worst_scores = torch.zeros(batch_size, device=device) + 1e9
self._beam_hyps = []
self._beam_scores = []
self._beam_hyps_max_length = max_length - 1 # ignoring bos_token
if not isinstance(num_beams, int) or num_beams <= 1:
raise ValueError(
f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
" one should make use of `greedy_search` instead."
)
if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
raise ValueError(
"`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
)
def hypo_len(self, hypo_idx: int):
"""
Number of hypotheses in the list.
"""
return self._beam_hyps_count[hypo_idx]
def hypo_add(self, hyp: torch.Tensor, sum_logprobs: float, hypo_idx: int):
"""
Add a new hypothesis to the list.
"""
score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
hyps_count = self.hypo_len(hypo_idx)
if hyps_count < self.num_beams or score > self._beam_hyps_worst_scores[hypo_idx]:
# NOTE: work around difference of torch.sum(empty_tensor) == 0, while error in onnx.
# Bug: https://msdata.visualstudio.com/Vienna/_workitems/edit/1486599
beam_idx = (
torch.sum(self._beam_hyps_count[:hypo_idx]) if hypo_idx != 0 else torch.tensor(0, dtype=torch.long)
)
self._beam_scores.insert(beam_idx, torch.tensor([score]))
self._beam_hyps.insert(beam_idx, hyp)
if hyps_count + 1 > self.num_beams:
sorted_next_scores, sorted_indices = torch.topk(
torch.cat(self._beam_scores)[beam_idx : beam_idx + hyps_count + 1], hyps_count + 1, largest=False
)
del self._beam_hyps[int((sorted_indices[0] + beam_idx))]
del self._beam_scores[int((sorted_indices[0] + beam_idx))]
self._beam_hyps_worst_scores[hypo_idx] = sorted_next_scores[1]
else:
self._beam_hyps_worst_scores[hypo_idx] = min(score, self._beam_hyps_worst_scores[hypo_idx])
self._beam_hyps_count[hypo_idx] = hyps_count + 1
def hypo_is_done(self, hypo_idx: int, best_sum_logprobs: float, cur_len: int) -> bool:
"""
If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
one in the heap, then we are done with this sentence.
"""
if self.hypo_len(hypo_idx) < self.num_beams:
return False
elif self.do_early_stopping:
return True
else:
cur_score = best_sum_logprobs / cur_len**self.length_penalty
ret = self._beam_hyps_worst_scores[hypo_idx].item() >= cur_score
return ret
def process(
self,
input_ids: torch.Tensor,
next_scores: torch.Tensor,
next_tokens: torch.Tensor,
next_indices: torch.Tensor,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
cur_len = input_ids.shape[-1]
batch_size = len(self._beam_hyps_count)
assert batch_size == (input_ids.shape[0] // self.group_size)
device = input_ids.device
next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
for batch_idx in range(batch_size):
if self._done[batch_idx]:
assert (
self.hypo_len(batch_idx) >= self.num_beams
), "Batch can only be done if at least {} beams have been generated".format(self.num_beams)
assert (
eos_token_id is not None and pad_token_id is not None
), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined"
# pad the batch
next_beam_scores[batch_idx, :] = 0
next_beam_tokens[batch_idx, :] = pad_token_id
next_beam_indices[batch_idx, :] = 0
continue
# next tokens for this sentence
beam_idx = 0
for beam_token_rank, (next_token, next_score, next_index) in enumerate(
zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
):
batch_beam_idx = batch_idx * self.group_size + next_index
# add to generated hypotheses if end of sentence
if (eos_token_id is not None) and (next_token == eos_token_id):
# if beam_token does not belong to top num_beams tokens, it should not be added
is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
if is_beam_token_worse_than_top_num_beams:
continue
self.hypo_add(
input_ids[batch_beam_idx].clone(),
next_score.item(),
batch_idx,
)
else:
# add next predicted token since it is not eos_token
next_beam_scores[batch_idx, beam_idx] = next_score
next_beam_tokens[batch_idx, beam_idx] = next_token
next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
beam_idx += 1
# once the beam for next step is full, don't add more tokens to it.
if beam_idx == self.group_size:
break
if beam_idx < self.group_size:
raise ValueError(
f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
)
# Check if we are done so that we can save a pad step if all(done)
self._done[batch_idx] = self._done[batch_idx] or self.hypo_is_done(
batch_idx,
next_scores[batch_idx].max().item(),
cur_len,
)
return next_beam_scores.view(-1), next_beam_tokens.view(-1), next_beam_indices.view(-1)
def finalize(
self,
input_ids: torch.Tensor,
final_beam_scores: torch.Tensor,
final_beam_tokens: torch.Tensor,
final_beam_indices: torch.Tensor,
pad_token_id: int,
eos_token_id: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = len(self._beam_hyps_count)
# finalize all open beam hypotheses and add to generated hypotheses
for batch_idx in range(batch_size):
if self._done[batch_idx]:
continue
# all open beam hypotheses are added to the beam hypothesis
# beam hypothesis class automatically keeps the best beams
for beam_id in range(self.num_beams):
batch_beam_idx = batch_idx * self.num_beams + beam_id
final_score = final_beam_scores[batch_beam_idx].item()
final_tokens = input_ids[batch_beam_idx]
self.hypo_add(final_tokens, final_score, batch_idx)
# select the best hypotheses
# NOTE: torch.Tensor.new_zeros() is not scriptable
sent_lengths = torch.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=torch.long)
best = []
best_scores = torch.zeros(
batch_size * self.num_beam_hyps_to_keep, device=input_ids.device, dtype=torch.float32
)
# retrieve best hypotheses
for i in range(batch_size):
# NOTE: lambda is not scriptable
batch_hypo_start = torch.sum(self._beam_hyps_count[:i]) if i > 0 else torch.tensor(0, dtype=torch.long)
batch_hypo_end = torch.sum(self._beam_hyps_count[: i + 1])
beam_scores = torch.cat(self._beam_scores)[batch_hypo_start:batch_hypo_end]
sorted_next_scores, sorted_indices = torch.topk(beam_scores, len(beam_scores), largest=True)
for j in range(self.num_beam_hyps_to_keep):
best_score = beam_scores[sorted_indices[j]]
best_hyp = self._beam_hyps[batch_hypo_start + sorted_indices[j]]
sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)
# append to lists
best.append(best_hyp)
best_scores[i * self.num_beam_hyps_to_keep + j] = best_score
# prepare for adding eos
sent_max_len = min(sent_lengths.max() + 1, self.max_length)
decoded = torch.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=torch.long)
# shorter batches are padded if needed
if sent_lengths.min() != sent_lengths.max():
assert pad_token_id is not None, "`pad_token_id` has to be defined"
decoded.fill_(pad_token_id)
# fill with hypotheses and eos_token_id if the latter fits in
for i, hypo in enumerate(best):
decoded[i, : sent_lengths[i]] = hypo
if sent_lengths[i] < self.max_length:
decoded[i, sent_lengths[i]] = eos_token_id
return decoded, best_scores
class BARTBeamSearchGenerator(BARTGenerator):
def __init__(self, model):
super().__init__(model)
self.beam_scorer = BeamSearchScorerTS()
self.device = model.device
@staticmethod
def _expand_inputs_for_generation(
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
last_hidden_state: torch.Tensor,
expand_size: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
expanded_return_idx = (
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
)
input_ids = input_ids.index_select(0, expanded_return_idx)
attention_mask = attention_mask.index_select(0, expanded_return_idx)
last_hidden_state = last_hidden_state.index_select(0, expanded_return_idx.to(last_hidden_state.device))
return input_ids, attention_mask, last_hidden_state
def adjust_logits_during_generation(self, logits, cur_len: int, max_length: int):
if cur_len == 1 and self.config.force_bos_token_to_be_generated:
logits = self._force_token_id_to_be_generated(logits, self.config.bos_token_id)
elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
logits = self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
@staticmethod
def _force_token_id_to_be_generated(scores, token_id: int):
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
mask = torch.full_like(scores, 1, dtype=torch.bool)
mask[:, token_id] = False
return scores.masked_fill(mask, -float("inf"))
def _reorder_cache(self, past: List[torch.Tensor], beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
reordered_decoder_past = []
for state in past:
reordered_decoder_past.append(state.index_select(0, beam_idx))
return reordered_decoder_past
def beam_search(
self, input_ids, encoder_output, attention_mask, num_beams, max_length, pad_token_id: int, eos_token_id: int
):
batch_size = self.beam_scorer.batch_size
num_beams = self.beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape
assert (
num_beams * batch_size == batch_beam_size
), f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))
next_tokens = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device)
next_indices = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device)
past: List[torch.Tensor] = []
while cur_len < max_length:
logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past)
next_token_logits = logits[:, -1, :]
# adjust tokens for Bart, *e.g.*
next_token_logits = self.adjust_logits_during_generation(
next_token_logits, cur_len=cur_len, max_length=max_length
)
next_token_scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size)
# pre-process distribution
next_token_scores = self.logits_processor(input_ids, next_token_scores)
next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores)
# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
)
next_indices = next_tokens // vocab_size
next_tokens = next_tokens % vocab_size
beam_scores, beam_next_tokens, beam_idx = self.beam_scorer.process(
input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
cur_len = cur_len + 1
if len(past) > 0:
past = self._reorder_cache(past, beam_idx)
if self.beam_scorer.is_done():
break
sequences, sequence_scores = self.beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
return sequences
def forward(self, input_ids, attention_mask, num_beams, max_length, decoder_start_token_id):
pad_token_id = self.config.pad_token_id
bos_token_id = self.config.bos_token_id
eos_token_id = self.config.eos_token_id
# special case if pad_token_id is not defined
if pad_token_id is None and eos_token_id is not None:
# logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
pad_token_id = eos_token_id
encoder_output = self._encoder_forward(input_ids, attention_mask)
input_ids = self._prepare_decoder_input_ids_for_generation(
input_ids,
decoder_start_token_id=decoder_start_token_id,
bos_token_id=bos_token_id,
)
batch_size = input_ids.shape[0]
length_penalty = self.config.length_penalty
num_return_sequences = self.config.num_return_sequences
early_stopping = True
self.beam_scorer.init(
batch_size=batch_size,
max_length=max_length,
num_beams=num_beams,
device=self.device,
length_penalty=length_penalty,
do_early_stopping=early_stopping,
num_beam_hyps_to_keep=num_return_sequences,
)
input_ids, attention_mask, encoder_output = self._expand_inputs_for_generation(
input_ids,
attention_mask,
encoder_output,
expand_size=num_beams,
)
return self.beam_search(
input_ids=input_ids,
encoder_output=encoder_output,
attention_mask=attention_mask,
num_beams=num_beams,
max_length=max_length,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)