remove-background-web/main.js (70 lines of code) (raw):

import { AutoModel, AutoProcessor, RawImage } from "@huggingface/transformers"; // Constants const EXAMPLE_URL = "https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024"; // Reference the elements that we will need const status = document.getElementById("status"); const fileUpload = document.getElementById("upload"); const imageContainer = document.getElementById("container"); const example = document.getElementById("example"); // Load model and processor status.textContent = "Loading model..."; const model = await AutoModel.from_pretrained("briaai/RMBG-1.4", { // Do not require config.json to be present in the repository config: { model_type: "custom" }, }); const processor = await AutoProcessor.from_pretrained("briaai/RMBG-1.4", { // Do not require config.json to be present in the repository config: { do_normalize: true, do_pad: false, do_rescale: true, do_resize: true, image_mean: [0.5, 0.5, 0.5], feature_extractor_type: "ImageFeatureExtractor", image_std: [1, 1, 1], resample: 2, rescale_factor: 0.00392156862745098, size: { width: 1024, height: 1024 }, }, }); status.textContent = "Ready"; example.addEventListener("click", (e) => { e.preventDefault(); predict(EXAMPLE_URL); }); fileUpload.addEventListener("change", function (e) { const file = e.target.files[0]; if (!file) { return; } const reader = new FileReader(); // Set up a callback when the file is loaded reader.onload = (e2) => predict(e2.target.result); reader.readAsDataURL(file); }); // Predict foreground of the given image async function predict(url) { // Read image const image = await RawImage.fromURL(url); // Update UI imageContainer.innerHTML = ""; imageContainer.style.backgroundImage = `url(${url})`; // Set container width and height depending on the image aspect ratio const ar = image.width / image.height; const [cw, ch] = ar > 720 / 480 ? [720, 720 / ar] : [480 * ar, 480]; imageContainer.style.width = `${cw}px`; imageContainer.style.height = `${ch}px`; status.textContent = "Analysing..."; // Preprocess image const { pixel_values } = await processor(image); // Predict alpha matte const { output } = await model({ input: pixel_values }); // Resize mask back to original size const mask = await RawImage.fromTensor(output[0].mul(255).to("uint8")).resize( image.width, image.height, ); image.putAlpha(mask); // Create new canvas const canvas = document.createElement("canvas"); canvas.width = image.width; canvas.height = image.height; const ctx = canvas.getContext("2d"); ctx.drawImage(image.toCanvas(), 0, 0); // Update UI imageContainer.append(canvas); imageContainer.style.removeProperty("background-image"); imageContainer.style.background = `url("")`; status.textContent = "Done!"; }