def convert_checkpoint_from_transformers_to_megatron()

in src/transformers/models/megatron_gpt2/checkpoint_reshaping_and_interoperability.py [0:0]


def convert_checkpoint_from_transformers_to_megatron(args):
    """
    Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable
    tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers
    which can have multiple shards.

    Args:
        args (argparse.Namespace): the arguments to the script

    """
    os.makedirs(args.save_path, exist_ok=True)
    # Search in directory above this
    sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
    if args.megatron_path is not None:
        sys.path.insert(0, args.megatron_path)

    megatron_exists = importlib.util.find_spec("megatron") is not None
    if megatron_exists:
        from megatron.core import package_info

        if version.parse(package_info.__version__) >= version.parse("0.6.0"):
            from megatron.training.tokenizer.tokenizer import _vocab_size_with_padding
        else:
            from megatron.tokenizer.tokenizer import _vocab_size_with_padding

    else:
        print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
        exit(1)

    # load the transformers model state dict and config
    sub_dirs = [x for x in os.listdir(args.load_path) if x.startswith("pytorch_model")]
    if len(sub_dirs) == 1:
        checkpoint_name = "pytorch_model.bin"
        check_torch_load_is_safe()
        state_dict = torch.load(os.path.join(args.load_path, checkpoint_name), map_location="cpu", weights_only=True)
    else:
        num_checkpoints = len(sub_dirs) - 1
        state_dict = merge_transformers_sharded_states(args.load_path, num_checkpoints)

    config = GPT2Config.from_pretrained(args.load_path)

    # Saving the tracker file
    tracker_filepath = os.path.join(args.save_path, "latest_checkpointed_iteration.txt")
    with open(tracker_filepath, "w") as f:
        f.write("release")

    # create `release` dir in args.load_path
    release_dir = os.path.join(args.save_path, "release")
    os.makedirs(release_dir, exist_ok=True)

    # megatron args
    megatron_args = {
        "orig_vocab_size": config.vocab_size,
        "max_position_embeddings": config.n_positions,
        "hidden_size": config.n_embd,
        "num_layers": config.n_layer,
        "num_attention_heads": config.n_head,
        "ffn_hidden_size": config.n_inner,
        "tensor_model_parallel_size": args.target_tensor_model_parallel_size,
        "pipeline_model_parallel_size": args.target_pipeline_model_parallel_size,
        "data_parallel_size": args.target_data_parallel_size,
        "make_vocab_size_divisible_by": args.make_vocab_size_divisible_by,
        "rank": 0,
        "tokenizer_type": "GPT2BPETokenizer",
    }

    if config.activation_function == "gelu":
        megatron_args["bias_gelu_fusion"] = False
        megatron_args["openai_gelu"] = False
    elif config.activation_function == "gelu_fast":
        megatron_args["bias_gelu_fusion"] = True
        megatron_args["openai_gelu"] = False
    elif config.activation_function == "gelu_new":
        megatron_args["bias_gelu_fusion"] = False
        megatron_args["openai_gelu"] = True

    margs = types.SimpleNamespace()
    for k, v in megatron_args.items():
        setattr(margs, k, v)

    # params dtype
    if args.target_params_dtype == "fp16":
        dtype = torch.float16
    elif args.target_params_dtype == "bf16":
        dtype = torch.bfloat16
    else:
        dtype = torch.float32
    setattr(margs, "params_dtype", dtype)

    # save dummy optim state dict
    dummy_optim_state_dict = {}
    dummy_optim_state_dict["optimizer"] = {
        "step": 0,
        "param_groups": [
            {
                "lr": 0.0,
                "beta1": 0.0,
                "beta2": 0.0,
                "eps": 0.0,
                "weight_decay": 0.0,
                "correct_bias": False,
                "params": [],
            }
        ],
    }
    if args.use_distributed_optimizer:
        for i in range(args.target_pipeline_model_parallel_size):
            for j in range(args.target_tensor_model_parallel_size):
                for k in range(args.target_data_parallel_size):
                    if args.target_pipeline_model_parallel_size == 1:
                        checkpoint_dir = f"mp_rank_{j:02d}_{k:03d}"
                    else:
                        checkpoint_dir = f"mp_rank_{j:02d}_{i:03d}_{k:03d}"
                    checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
                    os.makedirs(checkpoint_dir, exist_ok=True)
                    torch.save(
                        dummy_optim_state_dict,
                        os.path.join(checkpoint_dir, "optim.pt"),
                    )

    # Convert.
    print("Converting")
    output_state_dict = []
    for i in range(args.target_tensor_model_parallel_size):
        output_state_dict.append({})

    # Embedding layer
    print("converting embedding layer")
    pos_embedding = state_dict["transformer.wpe.weight"].to(dtype)
    word_embedding = state_dict["transformer.wte.weight"].to(dtype)
    orig_vocab_size = config.vocab_size
    padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs)
    setattr(margs, "padded_vocab_size", padded_vocab_size)
    # Cut out extra padding we don't need
    if orig_vocab_size > padded_vocab_size:
        full_word_embed = word_embedding[0:padded_vocab_size, :]
    # Expanding embedding to larger size by replicating final entry
    elif orig_vocab_size < padded_vocab_size:
        padding_size = padded_vocab_size - orig_vocab_size
        full_word_embed = torch.cat((word_embedding, word_embedding[-1].unsqueeze(0).expand(padding_size, -1)))
    # Same size!
    else:
        full_word_embed = word_embedding

    # Split into new tensor model parallel sizes
    out_word_embed = torch.chunk(full_word_embed, args.target_tensor_model_parallel_size, dim=0)
    for i in range(args.target_tensor_model_parallel_size):
        pos_emb_dict = get_element_from_dict_by_path(
            output_state_dict[i], "model.language_model.embedding.position_embeddings"
        )
        pos_emb_dict["weight"] = pos_embedding

        word_emb_dict = get_element_from_dict_by_path(
            output_state_dict[i], "model.language_model.embedding.word_embeddings"
        )
        word_emb_dict["weight"] = out_word_embed[i].clone()

    # Transformer layers
    print("converting transformer layers")
    if config.num_attention_heads % args.target_tensor_model_parallel_size != 0:
        raise ValueError(
            f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of tensor parallelism"
            f" ({args.target_tensor_model_parallel_size})"
        )

    if config.num_hidden_layers % args.target_pipeline_model_parallel_size != 0:
        raise ValueError(
            f"Number of layers ({config.num_hidden_layers}) must be divisible by number of pipeline parallelism"
            f" ({args.target_pipeline_model_parallel_size})"
        )

    num_layers = config.num_hidden_layers // args.target_pipeline_model_parallel_size

    layer_re = re.compile(r"transformer.h\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
    # The number of heads.
    heads = config.n_head
    # The hidden_size per head.
    hidden_size_per_head = config.n_embd // config.n_head
    for pp_rank in range(args.target_pipeline_model_parallel_size):
        layer_offset = pp_rank * num_layers
        if pp_rank > 0:
            output_state_dict = []
            for i in range(args.target_tensor_model_parallel_size):
                output_state_dict.append({})

        for layer in range(num_layers):
            pp_layer_id = layer + layer_offset
            layers_to_copy = [
                layer_name
                for layer_name in state_dict.keys()
                if layer_name.startswith(f"transformer.h.{pp_layer_id}.")
            ]

            for layer_name in layers_to_copy:
                m = layer_re.match(layer_name)
                # Stop if that's not a layer
                if m is None:
                    break

                # The index of the layer.
                _ = int(m.group(1))
                # The name of the operation.
                op_name = m.group(2)
                # Is it a weight or a bias?
                weight_or_bias = m.group(3)

                params = state_dict[layer_name].to(dtype)
                # handle layernorm
                if op_name.startswith("ln"):
                    out_name = "input_layernorm" if op_name.endswith("1") else "post_attention_layernorm"
                    layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"

                # handle attention K, V, Q weights
                elif op_name.startswith("attn.c_attn") and weight_or_bias == "weight":
                    # transformers stores D X (3*D) but Megatron-LM expects (3*D) X D.
                    params = params.transpose(0, 1).contiguous()

                    params = transformers_to_megatron_fix_query_key_value_ordering(
                        params,
                        3.0,
                        3,
                        heads,
                        hidden_size_per_head,
                    )
                    layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"

                # handle attention K, V, Q bias
                elif op_name.startswith("attn.c_attn") and weight_or_bias == "bias":
                    params = transformers_to_megatron_fix_query_key_value_ordering(
                        params,
                        3.0,
                        3,
                        heads,
                        hidden_size_per_head,
                    )
                    layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"

                # handle attention and mlp weights
                elif weight_or_bias == "weight":
                    out_name = transformers_to_megatron.get(op_name, None)
                    if out_name is None:
                        continue
                    params = params.transpose(0, 1)
                    layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"

                # handle attention and mlp bias
                elif weight_or_bias == "bias":
                    out_name = transformers_to_megatron.get(op_name, None)
                    if out_name is None:
                        continue
                    layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"

                # skip
                else:
                    continue

                if op_name + "." + weight_or_bias in tensor_parallel_params:
                    dim = 1 if op_name in ["attn.c_proj", "mlp.c_proj"] else 0
                    params = torch.chunk(params, args.target_tensor_model_parallel_size, dim=dim)

                for i in range(args.target_tensor_model_parallel_size):
                    params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
                    params_dict[layer_name] = (
                        params[i].clone() if (op_name + "." + weight_or_bias in tensor_parallel_params) else params
                    )

        if pp_rank == args.target_pipeline_model_parallel_size - 1:
            # handle final layernorm
            for weight_or_bias in ["weight", "bias"]:
                params = state_dict[f"transformer.ln_f.{weight_or_bias}"].to(dtype)
                layer_name = f"final_layernorm.{weight_or_bias}"
                for i in range(args.target_tensor_model_parallel_size):
                    params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
                    params_dict[layer_name] = params

            # add the LM head
            for i in range(args.target_tensor_model_parallel_size):
                params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head")
                params_dict["weight"] = out_word_embed[i].clone()

        # saving the state dict as per the tp_rank and pp_rank
        for tp_rank in range(args.target_tensor_model_parallel_size):
            output_state_dict[tp_rank]["checkpoint_version"] = 3.0
            output_state_dict[tp_rank]["args"] = margs
            checkpoint_dir = (
                f"mp_rank_{tp_rank:02d}"
                if args.target_pipeline_model_parallel_size == 1
                else f"mp_rank_{tp_rank:02d}_{pp_rank:03d}"
            )
            if args.use_distributed_optimizer:
                checkpoint_name = "model_rng.pt"
            else:
                checkpoint_name = "model_optim_rng.pt"
                output_state_dict[tp_rank]["optimizer"] = dummy_optim_state_dict["optimizer"]
            checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
            os.makedirs(checkpoint_dir, exist_ok=True)
            checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
            if args.print_checkpoint_structure:
                print(
                    f"Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank"
                    f" {pp_rank}:"
                )
                recursive_print(None, output_state_dict[tp_rank])
            torch.save(output_state_dict[tp_rank], checkpoint_path)