in src/transformers/models/deprecated/realm/modeling_realm.py [0:0]
def load_tf_weights_in_realm(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
if isinstance(model, RealmReader) and "reader" not in name:
logger.info(f"Skipping {name} as it is not {model.__class__.__name__}'s parameter")
continue
# For pretrained openqa reader
if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmForOpenQA):
name = name.replace("bert/", "reader/realm/")
name = name.replace("cls/", "reader/cls/")
# For pretrained encoder
if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmKnowledgeAugEncoder):
name = name.replace("bert/", "realm/")
# For finetuned reader
if name.startswith("reader"):
reader_prefix = "" if isinstance(model, RealmReader) else "reader/"
name = name.replace("reader/module/bert/", f"{reader_prefix}realm/")
name = name.replace("reader/module/cls/", f"{reader_prefix}cls/")
name = name.replace("reader/dense/", f"{reader_prefix}qa_outputs/dense_intermediate/")
name = name.replace("reader/dense_1/", f"{reader_prefix}qa_outputs/dense_output/")
name = name.replace("reader/layer_normalization", f"{reader_prefix}qa_outputs/layer_normalization")
# For embedder and scorer
if name.startswith("module/module/module/"): # finetuned
embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/"
name = name.replace("module/module/module/module/bert/", f"{embedder_prefix}realm/")
name = name.replace("module/module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/")
name = name.replace("module/module/module/dense/", f"{embedder_prefix}cls/dense/")
name = name.replace("module/module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/")
name = name.replace("module/module/module/bert/", f"{embedder_prefix}realm/")
name = name.replace("module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/")
elif name.startswith("module/module/"): # pretrained
embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/"
name = name.replace("module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/")
name = name.replace("module/module/dense/", f"{embedder_prefix}cls/dense/")
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
assert pointer.shape == array.shape, (
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
)
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model