in src/transformers/models/convnext/convert_convnext_to_pytorch.py [0:0]
def convert_convnext_checkpoint(checkpoint_url, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our ConvNext structure.
"""
# define ConvNext configuration based on URL
config, expected_shape = get_convnext_config(checkpoint_url)
# load original state_dict from URL
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"]
# rename keys
for key in state_dict.copy().keys():
val = state_dict.pop(key)
state_dict[rename_key(key)] = val
# add prefix to all keys expect classifier head
for key in state_dict.copy().keys():
val = state_dict.pop(key)
if not key.startswith("classifier"):
key = "convnext." + key
state_dict[key] = val
# load HuggingFace model
model = ConvNextForImageClassification(config)
model.load_state_dict(state_dict)
model.eval()
# Check outputs on an image, prepared by ConvNextImageProcessor
size = 224 if "224" in checkpoint_url else 384
image_processor = ConvNextImageProcessor(size=size)
pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values
logits = model(pixel_values).logits
# note: the logits below were obtained without center cropping
if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth":
expected_logits = torch.tensor([-0.1210, -0.6605, 0.1918])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth":
expected_logits = torch.tensor([-0.4473, -0.1847, -0.6365])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth":
expected_logits = torch.tensor([0.4525, 0.7539, 0.0308])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_384.pth":
expected_logits = torch.tensor([0.3561, 0.6350, -0.0384])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth":
expected_logits = torch.tensor([0.4174, -0.0989, 0.1489])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth":
expected_logits = torch.tensor([0.2513, -0.1349, -0.1613])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth":
expected_logits = torch.tensor([1.2980, 0.3631, -0.1198])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth":
expected_logits = torch.tensor([1.2963, 0.1227, 0.1723])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth":
expected_logits = torch.tensor([1.7956, 0.8390, 0.2820])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth":
expected_logits = torch.tensor([-0.2822, -0.0502, -0.0878])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth":
expected_logits = torch.tensor([-0.5672, -0.0730, -0.4348])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth":
expected_logits = torch.tensor([0.2681, 0.2365, 0.6246])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth":
expected_logits = torch.tensor([-0.2642, 0.3931, 0.5116])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth":
expected_logits = torch.tensor([-0.6677, -0.1873, -0.8379])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth":
expected_logits = torch.tensor([-0.7749, -0.2967, -0.6444])
else:
raise ValueError(f"Unknown URL: {checkpoint_url}")
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-3)
assert logits.shape == expected_shape
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
print("Pushing model to the hub...")
model_name = "convnext"
if "tiny" in checkpoint_url:
model_name += "-tiny"
elif "small" in checkpoint_url:
model_name += "-small"
elif "base" in checkpoint_url:
model_name += "-base"
elif "xlarge" in checkpoint_url:
model_name += "-xlarge"
elif "large" in checkpoint_url:
model_name += "-large"
if "224" in checkpoint_url:
model_name += "-224"
elif "384" in checkpoint_url:
model_name += "-384"
if "22k" in checkpoint_url and "1k" not in checkpoint_url:
model_name += "-22k"
if "22k" in checkpoint_url and "1k" in checkpoint_url:
model_name += "-22k-1k"
model.push_to_hub(
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
organization="nielsr",
commit_message="Add model",
)