train_rick/run_grpo.py (47 lines of code) (raw):
# accelerate launch --num_processes 4 run_grpo.py
# CUDA_VISIBLE_DEVICES=4,5,6,7 trl vllm-serve --model qgallouedec/SmolLM2-360M-Rickified --data_parallel_size 4 --max_model_len 1024
from trl import GRPOTrainer, GRPOConfig
from datasets import load_dataset
import re
def format_reward(completions, **kwargs):
pattern = r"^<think>(?!.*<think>)(.*?)</think>.*$"
completion_contents = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, content, re.DOTALL | re.MULTILINE) for content in completion_contents]
return [1.0 if match else 0.0 for match in matches]
def correctness_reward(completions, solutions, **kwargs):
rewards = []
for completion, ground_truths in zip(completions, solutions):
content = completion[0]["content"]
matches = [ground_truth in content for ground_truth in ground_truths]
reward = 1.0 if any(matches) else 0.0
rewards.append(reward)
return rewards
def train():
dataset = load_dataset("qgallouedec/rick-physics-grpo", split="train")
def format_dataset(example):
return {"prompt": [{"role": "user", "content": example["question"]}]}
dataset = dataset.map(format_dataset)
args = GRPOConfig(
max_completion_length=512,
per_device_train_batch_size=64,
gradient_accumulation_steps=4,
num_train_epochs=10,
num_generations=16,
mask_truncated_completions=True,
# Speedup and reduce memory
gradient_checkpointing=True,
bf16=True,
use_vllm=True,
output_dir="data/SmolLM2-360M-Rickified-GRPO",
# Logging
run_name="SmolLM2-360M-Rickified-GRPO",
logging_steps=2,
log_completions=True,
num_completions_to_print=1,
)
trainer = GRPOTrainer(
model="qgallouedec/SmolLM2-360M-Rickified",
reward_funcs=[format_reward, correctness_reward],
train_dataset=dataset,
args=args,
)
trainer.train()
trainer.push_to_hub(dataset_name="qgallouedec/rick-physics-grpo")
if __name__ == "__main__":
train()