def generate_completions()

in trl/trainer/ppo_trainer.py [0:0]


    def generate_completions(self, sampling: bool = False):
        args = self.args
        processing_class = self.processing_class
        generation_config = GenerationConfig(
            max_new_tokens=self.args.response_length,
            temperature=(0.01 + 1e-7),
            top_k=0.0,
            top_p=1.0,
            do_sample=True,
        )

        table = defaultdict(list)
        with unwrap_model_for_generation(
            self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
        ) as unwrapped_model:
            for batch in self.eval_dataloader:
                query = batch["input_ids"]
                with torch.no_grad():
                    context_length = query.shape[1]
                    query_response, _ = batch_generation(
                        unwrapped_model.policy,
                        query,
                        query.shape[0],
                        processing_class.pad_token_id,
                        generation_config,
                    )
                    response = query_response[:, context_length:]
                    postprocessed_response = response
                    if self.stop_token_id is not None:  # handle the edge case when stop_token_id exists but is 0
                        postprocessed_response = truncate_response(
                            self.stop_token_id, processing_class.pad_token_id, response
                        )
                    table["query"].extend(
                        gather_object(processing_class.batch_decode(query, skip_special_tokens=True))
                    )
                    table["model response"].extend(
                        gather_object(processing_class.batch_decode(postprocessed_response))
                    )

                    postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
                    _, score, _ = get_reward(
                        self.reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
                    )
                    table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy())

                if sampling:
                    break
        df = pd.DataFrame(table)

        if self.accelerator.is_main_process:
            if is_rich_available():
                print_rich_table(df.iloc[0 : 0 + 5])
            if "wandb" in args.report_to:
                import wandb

                if wandb.run is not None:
                    wandb.log({"completions": wandb.Table(dataframe=df)})

            if "comet_ml" in args.report_to:
                log_table_to_comet_experiment(
                    name="completions.csv",
                    table=df,
                )