in trl/scripts/grpo.py [0:0]
def main(script_args, training_args, model_args):
# Load a pretrained model
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
# Get the reward models and functions
reward_funcs = []
if script_args.reward_model_name_or_path:
reward_model = AutoModelForSequenceClassification.from_pretrained(
script_args.reward_model_name_or_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
)
reward_funcs.append(reward_model)
if script_args.reward_funcs:
for func_name in script_args.reward_funcs:
if func_name in reward_funcs_registry:
reward_funcs.append(reward_funcs_registry[func_name])
elif "." in func_name:
module_path, func_name = func_name.rsplit(".", 1)
sys.path.insert(0, os.getcwd())
module = importlib.import_module(module_path)
reward_func = getattr(module, func_name)
reward_funcs.append(reward_func)
else:
raise ValueError(
f"Could not load reward function '{func_name}'. Expected one of "
f"{list(reward_funcs_registry.keys())} or a valid import path."
)
# Load the dataset
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
# Initialize the GRPO trainer
trainer = GRPOTrainer(
model=model,
reward_funcs=reward_funcs,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
)
# Train and push the model to the Hub
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)