def _prepare_peft_model()

in trl/trainer/sft_trainer.py [0:0]


    def _prepare_peft_model(self, model: PreTrainedModel, peft_config: Any, args: SFTConfig) -> PreTrainedModel:
        """Prepares a model for PEFT training."""
        if not is_peft_available():
            raise ImportError("To use PeftModel, you need to install the `peft` library.")

        if not isinstance(peft_config, PeftConfig):
            raise ValueError(
                f"Expected PeftConfig object but got {type(peft_config)}. If you want to use the PeftModel, you need "
                "to pass a PeftConfig object to the SFTTrainer."
            )

        if isinstance(model, PeftModel):
            return model

        # Handle quantized models (QLoRA)
        is_qlora = getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False)

        is_sharded_qlora = False
        if getattr(model, "is_loaded_in_4bit", False):
            # Check if model is sharded (FSDP/DS-Zero3)
            for _, param in model.named_parameters():
                if param.__class__.__name__ == "Params4bit":
                    is_sharded_qlora = param.data.device.type in {"cpu", "meta"}
                    break

        # Prepare model for kbit training if needed
        if is_qlora and not is_sharded_qlora:
            model = self._prepare_model_for_kbit_training(model, args)
            # Disable gradient checkpointing as it's handled by prepare_model_for_kbit_training
            args = dataclasses.replace(args, gradient_checkpointing=False)
        elif args.gradient_checkpointing:
            model = self._enable_gradient_checkpointing(model, args)

        # Create PEFT model
        if (
            version.parse(peft.__version__) >= version.parse("0.12")  # autocast_adapter_dtype introduced in 0.12
            and getattr(model, "is_loaded_in_4bit", False)
            and is_sharded_qlora
        ):
            model = get_peft_model(model, peft_config, autocast_adapter_dtype=False)
        else:
            model = get_peft_model(model, peft_config)

        # Handle bf16 casting for 4-bit models
        if args.bf16 and getattr(model, "is_loaded_in_4bit", False) and not is_sharded_qlora:
            peft_module_casting_to_bf16(model)

        return model