def tokenize_row()

in trl/trainer/orpo_trainer.py [0:0]


    def tokenize_row(self, feature, model: Optional[Union[PreTrainedModel, nn.Module]] = None) -> dict:
        """Tokenize a single row from a ORPO specific dataset.

        At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation in case the prompt +
        chosen or prompt + rejected responses is/are too long. First we truncate the prompt; if we're still too long,
        we truncate the chosen/rejected.

        We also create the labels for the chosen/rejected responses, which are of length equal to the sum of the length
        of the prompt and the chosen/rejected response, with label_pad_token_id for the prompt tokens.
        """
        batch = {}
        prompt = feature["prompt"]
        chosen = feature["chosen"]
        rejected = feature["rejected"]

        if not self.is_encoder_decoder:
            # Check issues below for more details
            #  1. https://github.com/huggingface/trl/issues/907
            #  2. https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257
            #  3. https://github.com/LianjiaTech/BELLE/issues/337

            if not isinstance(prompt, str):
                raise ValueError(f"prompt should be an str but got {type(prompt)}")
            prompt_tokens = self.processing_class(prompt, add_special_tokens=False)
            prompt_tokens = {f"prompt_{k}": v for k, v in prompt_tokens.items()}

            if not isinstance(chosen, str):
                raise ValueError(f"chosen should be an str but got {type(chosen)}")
            chosen_tokens = self.build_tokenized_answer(prompt, chosen)

            if not isinstance(rejected, str):
                raise ValueError(f"rejected should be an str but got {type(rejected)}")
            rejected_tokens = self.build_tokenized_answer(prompt, rejected)

            # Last prompt token might get merged by tokenizer and
            # it should not be included for generation if that happens
            prompt_len_input_ids = len(prompt_tokens["prompt_input_ids"])

            chosen_prompt_len_input_ids = len(chosen_tokens["prompt_input_ids"])
            rejected_prompt_len_input_ids = len(rejected_tokens["prompt_input_ids"])
            prompt_len_input_ids = min(chosen_prompt_len_input_ids, rejected_prompt_len_input_ids)

            for k, v in prompt_tokens.items():
                prompt_tokens[k] = v[:prompt_len_input_ids]

            # Make sure prompts only have one different token at most an
            # and length only differs by 1 at most
            num_diff_tokens = sum(
                [a != b for a, b in zip(chosen_tokens["prompt_input_ids"], rejected_tokens["prompt_input_ids"])]
            )
            num_diff_len = abs(chosen_prompt_len_input_ids - rejected_prompt_len_input_ids)
            if num_diff_tokens > 1 or num_diff_len > 1:
                raise ValueError(
                    "Chosen and rejected prompt_input_ids might only differ on the "
                    "last token due to tokenizer merge ops."
                )

            # add BOS token to head of prompt. Avoid adding if it's already there
            prompt_tokens, chosen_tokens, rejected_tokens = add_bos_token_if_needed(
                self.processing_class.bos_token_id,
                prompt_len_input_ids,
                prompt_tokens,
                chosen_prompt_len_input_ids,
                chosen_tokens,
                rejected_prompt_len_input_ids,
                rejected_tokens,
            )

            # add EOS token to end of answer. Avoid adding if it's already there
            chosen_tokens, rejected_tokens = add_eos_token_if_needed(
                self.processing_class.eos_token_id, chosen_tokens, rejected_tokens
            )

            longer_response_length = max(len(chosen_tokens["input_ids"]), len(rejected_tokens["input_ids"]))

            # if combined sequence is too long, truncate the prompt
            for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]:
                if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length:
                    if self.truncation_mode == "keep_start":
                        for k in ["prompt_input_ids", "prompt_attention_mask"]:
                            answer_tokens[k] = answer_tokens[k][: self.max_prompt_length]
                    elif self.truncation_mode == "keep_end":
                        for k in ["prompt_input_ids", "prompt_attention_mask"]:
                            answer_tokens[k] = answer_tokens[k][-self.max_prompt_length :]
                    else:
                        raise ValueError(f"Unknown truncation mode: {self.truncation_mode}")

            # if that's still too long, truncate the response
            for answer_tokens in [chosen_tokens, rejected_tokens]:
                if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length:
                    for k in ["input_ids", "attention_mask"]:
                        answer_tokens[k] = answer_tokens[k][: self.max_length - self.max_prompt_length]

            # Create labels
            chosen_sequence_tokens = {
                k: chosen_tokens[f"prompt_{k}"] + chosen_tokens[k] for k in ["input_ids", "attention_mask"]
            }
            rejected_sequence_tokens = {
                k: rejected_tokens[f"prompt_{k}"] + rejected_tokens[k] for k in ["input_ids", "attention_mask"]
            }
            chosen_sequence_tokens["labels"] = chosen_sequence_tokens["input_ids"][:]
            chosen_sequence_tokens["labels"][: len(chosen_tokens["prompt_input_ids"])] = [
                self.label_pad_token_id
            ] * len(chosen_tokens["prompt_input_ids"])
            rejected_sequence_tokens["labels"] = rejected_sequence_tokens["input_ids"][:]
            rejected_sequence_tokens["labels"][: len(rejected_tokens["prompt_input_ids"])] = [
                self.label_pad_token_id
            ] * len(rejected_tokens["prompt_input_ids"])

            for k, toks in {
                "chosen_": chosen_sequence_tokens,
                "rejected_": rejected_sequence_tokens,
                "": prompt_tokens,
            }.items():
                for type_key, tokens in toks.items():
                    if type_key == "token_type_ids":
                        continue
                    batch[f"{k}{type_key}"] = tokens

        else:
            chosen_tokens = self.processing_class(
                chosen, truncation=True, max_length=self.max_completion_length, add_special_tokens=True
            )
            rejected_tokens = self.processing_class(
                rejected, truncation=True, max_length=self.max_completion_length, add_special_tokens=True
            )
            prompt_tokens = self.processing_class(
                prompt, truncation=True, max_length=self.max_prompt_length, add_special_tokens=True
            )

            batch["chosen_labels"] = chosen_tokens["input_ids"]
            batch["rejected_labels"] = rejected_tokens["input_ids"]
            batch["prompt_input_ids"] = prompt_tokens["input_ids"]
            batch["prompt_attention_mask"] = prompt_tokens["attention_mask"]

            if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"):
                batch["rejected_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels(
                    labels=torch.tensor(batch["rejected_labels"])
                )
                batch["chosen_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels(
                    labels=torch.tensor(batch["chosen_labels"])
                )

        if is_torch_xla_available():
            # Pad the sequences to global max_length to avoid TorchXLA recompilation
            for k in batch:
                if "labels" in k or self.is_encoder_decoder:
                    pad_value = self.label_pad_token_id
                elif k.endswith("_input_ids"):
                    pad_value = self.padding_value
                elif k.endswith("_attention_mask"):
                    pad_value = 0
                batch[k] = batch[k] + [pad_value] * (self.max_length - len(batch[k]))
        return batch