def compute_loss()

in trl/trainer/sft_trainer.py [0:0]


    def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
        """
        Compute training loss and additionally compute token accuracies
        """
        mode = "train" if self.model.training else "eval"
        (loss, outputs) = super().compute_loss(
            model, inputs, return_outputs=True, num_items_in_batch=num_items_in_batch
        )
        if mode == "train":
            # When using padding-free, the attention_mask is not present in the inputs, instead we have cu_seq_lens_q,
            # cu_seq_lens_k, and max_length_k, max_length_q and position_ids.
            if "attention_mask" in inputs:
                num_tokens_in_batch = self.accelerator.gather_for_metrics(inputs["attention_mask"].sum()).sum().item()
            elif "position_ids" in inputs:
                local_num_tokens = torch.tensor(inputs["position_ids"].size(1), device=inputs["position_ids"].device)
                num_tokens_in_batch = self.accelerator.gather_for_metrics(local_num_tokens).sum().item()
            else:
                raise ValueError("Expected 'attention_mask' or 'position_ids' in inputs.")
            self._total_train_tokens += num_tokens_in_batch
        self._metrics[mode]["num_tokens"] = [self._total_train_tokens]

        # Compute token accuracy if we have labels and if the model is not using Liger (no logits)
        if "labels" in inputs and not self.args.use_liger_kernel:
            shift_logits = outputs.logits[..., :-1, :].contiguous()
            shift_labels = inputs["labels"][..., 1:].contiguous()

            # Get predictions
            predictions = shift_logits.argmax(dim=-1)

            # Create mask for non-padding tokens (assuming ignore_index is -100)
            mask = shift_labels != -100

            # Calculate accuracy only on non-padding tokens
            correct_predictions = (predictions == shift_labels) & mask
            total_tokens = mask.sum()
            correct_tokens = correct_predictions.sum()

            # Gather the correct_tokens and total_tokens across all processes
            correct_tokens = self.accelerator.gather_for_metrics(correct_tokens)
            total_tokens = self.accelerator.gather_for_metrics(total_tokens)

            # Compute the mean token accuracy and log it
            total_sum = total_tokens.sum()
            accuracy = (correct_tokens.sum() / total_sum).item() if total_sum > 0 else 0.0
            self._metrics[mode]["mean_token_accuracy"].append(accuracy)

        return (loss, outputs) if return_outputs else loss