in trl/trainer/utils.py [0:0]
def __call__(self, examples: list[dict[str, Any]]) -> dict[str, torch.Tensor]:
input_ids = []
attention_mask = []
prompts_input_ids = []
prompt_attention_mask = []
labels = []
for example in examples:
formatted_prompt = example.get(self.prompt_key, None)
if formatted_prompt is None:
prompt = example[self.messages_key][:-1]
formatted_prompt = self.tokenizer.apply_chat_template(
prompt, tokenize=False, add_generation_prompt=True
)
if "input_ids" not in example:
message = example[self.messages_key]
formatted_message = self.tokenizer.apply_chat_template(
message, tokenize=False, add_generation_prompt=False
)
tokenized_message = self.tokenizer(
formatted_message,
truncation=True,
max_length=self.max_length,
padding=False,
return_tensors=None,
add_special_tokens=False,
)
input_ids.append(tokenized_message["input_ids"])
if "attention_mask" in example:
attention_mask.append(tokenized_message["attention_mask"])
else:
attention_mask.append([1] * len(tokenized_message["input_ids"]))
else:
input_ids.append(example["input_ids"])
if "attention_mask" in example:
attention_mask.append(example["attention_mask"])
else:
attention_mask.append([1] * len(example["input_ids"]))
tokenized_prompt = self.tokenizer(
formatted_prompt,
truncation=True,
max_length=len(input_ids[-1]),
padding=False,
return_tensors=None,
add_special_tokens=False,
)
prompts_input_ids.append(tokenized_prompt["input_ids"])
prompt_attention_mask.append(tokenized_prompt["attention_mask"])
# Create the labels that will have all but the completion tokens of the example["input_ids"] set to ignore_index
label = [self.ignore_index] * len(input_ids[-1])
completion_start_idx = len(tokenized_prompt["input_ids"])
label[completion_start_idx:] = input_ids[-1][completion_start_idx:]
labels.append(label)
# convert to list of tensors and pad
input_ids = [torch.tensor(ids, dtype=torch.long) for ids in input_ids]
attention_mask = [torch.tensor(mask, dtype=torch.long) for mask in attention_mask]
labels = [torch.tensor(label, dtype=torch.long) for label in labels]
input_ids = pad(input_ids, padding_side="left", padding_value=self.tokenizer.pad_token_id)
attention_mask = pad(attention_mask, padding_side="left", padding_value=0)
labels = pad(labels, padding_side="left", padding_value=self.ignore_index)
prompts_input_ids = [torch.tensor(ids, dtype=torch.long) for ids in prompts_input_ids]
prompt_attention_mask = [torch.tensor(mask, dtype=torch.long) for mask in prompt_attention_mask]
prompts_input_ids = pad(prompts_input_ids, padding_side="left", padding_value=self.tokenizer.pad_token_id)
prompt_attention_mask = pad(prompt_attention_mask, padding_side="left", padding_value=0)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
"prompts": prompts_input_ids,
"prompt_attention_mask": prompt_attention_mask,
}