video_processing/modules/optical_flow.py (75 lines of code) (raw):
import cv2
import numpy as np
from PIL import Image
def compute_farneback_optical_flow(frames):
prev_gray = cv2.cvtColor(np.array(frames[0]), cv2.COLOR_BGR2GRAY)
flow_maps = []
magnitudes = []
angles = []
images = []
hsv = np.zeros_like(frames[0])
hsv[..., 1] = 255
for frame in frames[1:]:
gray = cv2.cvtColor(np.array(frame), cv2.COLOR_BGR2GRAY)
flow_map = cv2.calcOpticalFlowFarneback(
prev_gray,
gray,
flow=None,
pyr_scale=0.5,
levels=3,
winsize=15,
iterations=3,
poly_n=5,
poly_sigma=1.2,
flags=0,
)
magnitude, angle = cv2.cartToPolar(flow_map[..., 0], flow_map[..., 1])
hsv[..., 0] = angle * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
flow_maps.append(flow_map)
magnitudes.append(magnitude)
angles.append(angle)
images.append(bgr)
prev_gray = gray
return flow_maps, magnitudes, angles, images
def compute_lk_optical_flow(frames):
# params for ShiTomasi corner detection
maxCorners = 50
feature_params = dict(maxCorners=maxCorners, qualityLevel=0.3, minDistance=7, blockSize=7)
# Parameters for lucas kanade optical flow
lk_params = dict(
winSize=(15, 15),
maxLevel=2,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03),
)
# Create some random colors
color = np.random.randint(0, 255, (maxCorners, 3))
# Take first frame and find corners in it
old_frame = frames[0]
old_gray = cv2.cvtColor(np.array(old_frame), cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
for frame in frames[1:]:
frame_gray = cv2.cvtColor(np.array(frame), cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
if p1 is not None:
good_new = p1[st == 1]
good_old = p0[st == 1]
# draw the tracks
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
mask = cv2.line(mask, (int(a), int(b)), (int(c), int(d)), color[i].tolist(), 2)
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1, 1, 2)
return mask
def _downscale_maps(flow_maps, downscale_size: int = 16):
return [
cv2.resize(
flow,
(downscale_size, int(flow.shape[0] * (downscale_size / flow.shape[1]))),
interpolation=cv2.INTER_AREA,
)
for flow in flow_maps
]
def _motion_score(flow_maps):
average_flow_map = np.mean(np.array(flow_maps), axis=0)
return np.mean(average_flow_map)
def _to_image(flow_maps):
return [Image.fromarray(np.array(flow_map)) for flow_map in flow_maps]