void cper_print_proc_arm()

in efi/cper-arm.c [238:342]


void cper_print_proc_arm(const char *pfx,
			 const struct cper_sec_proc_arm *proc)
{
	int i, len, max_ctx_type;
	struct cper_arm_err_info *err_info;
	struct cper_arm_ctx_info *ctx_info;
	char newpfx[64], infopfx[64];

	printk("%sMIDR: 0x%016llx\n", pfx, proc->midr);

	len = proc->section_length - (sizeof(*proc) +
		proc->err_info_num * (sizeof(*err_info)));
	if (len < 0) {
		printk("%ssection length: %d\n", pfx, proc->section_length);
		printk("%ssection length is too small\n", pfx);
		printk("%sfirmware-generated error record is incorrect\n", pfx);
		printk("%sERR_INFO_NUM is %d\n", pfx, proc->err_info_num);
		return;
	}

	if (proc->validation_bits & CPER_ARM_VALID_MPIDR)
		printk("%sMultiprocessor Affinity Register (MPIDR): 0x%016llx\n",
			pfx, proc->mpidr);

	if (proc->validation_bits & CPER_ARM_VALID_AFFINITY_LEVEL)
		printk("%serror affinity level: %d\n", pfx,
			proc->affinity_level);

	if (proc->validation_bits & CPER_ARM_VALID_RUNNING_STATE) {
		printk("%srunning state: 0x%x\n", pfx, proc->running_state);
		printk("%sPower State Coordination Interface state: %d\n",
			pfx, proc->psci_state);
	}

	snprintf(newpfx, sizeof(newpfx), "%s ", pfx);

	err_info = (struct cper_arm_err_info *)(proc + 1);
	for (i = 0; i < proc->err_info_num; i++) {
		printk("%sError info structure %d:\n", pfx, i);

		printk("%snum errors: %d\n", pfx, err_info->multiple_error + 1);

		if (err_info->validation_bits & CPER_ARM_INFO_VALID_FLAGS) {
			if (err_info->flags & CPER_ARM_INFO_FLAGS_FIRST)
				printk("%sfirst error captured\n", newpfx);
			if (err_info->flags & CPER_ARM_INFO_FLAGS_LAST)
				printk("%slast error captured\n", newpfx);
			if (err_info->flags & CPER_ARM_INFO_FLAGS_PROPAGATED)
				printk("%spropagated error captured\n",
				       newpfx);
			if (err_info->flags & CPER_ARM_INFO_FLAGS_OVERFLOW)
				printk("%soverflow occurred, error info is incomplete\n",
				       newpfx);
		}

		printk("%serror_type: %d, %s\n", newpfx, err_info->type,
			err_info->type < ARRAY_SIZE(cper_proc_error_type_strs) ?
			cper_proc_error_type_strs[err_info->type] : "unknown");
		if (err_info->validation_bits & CPER_ARM_INFO_VALID_ERR_INFO) {
			printk("%serror_info: 0x%016llx\n", newpfx,
			       err_info->error_info);
			snprintf(infopfx, sizeof(infopfx), "%s ", newpfx);
			cper_print_arm_err_info(infopfx, err_info->type,
						err_info->error_info);
		}
		if (err_info->validation_bits & CPER_ARM_INFO_VALID_VIRT_ADDR)
			printk("%svirtual fault address: 0x%016llx\n",
				newpfx, err_info->virt_fault_addr);
		if (err_info->validation_bits & CPER_ARM_INFO_VALID_PHYSICAL_ADDR)
			printk("%sphysical fault address: 0x%016llx\n",
				newpfx, err_info->physical_fault_addr);
		err_info += 1;
	}

	ctx_info = (struct cper_arm_ctx_info *)err_info;
	max_ctx_type = ARRAY_SIZE(arm_reg_ctx_strs) - 1;
	for (i = 0; i < proc->context_info_num; i++) {
		int size = sizeof(*ctx_info) + ctx_info->size;

		printk("%sContext info structure %d:\n", pfx, i);
		if (len < size) {
			printk("%ssection length is too small\n", newpfx);
			printk("%sfirmware-generated error record is incorrect\n", pfx);
			return;
		}
		if (ctx_info->type > max_ctx_type) {
			printk("%sInvalid context type: %d (max: %d)\n",
				newpfx, ctx_info->type, max_ctx_type);
			return;
		}
		printk("%sregister context type: %s\n", newpfx,
			arm_reg_ctx_strs[ctx_info->type]);
		print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4,
				(ctx_info + 1), ctx_info->size, 0);
		len -= size;
		ctx_info = (struct cper_arm_ctx_info *)((long)ctx_info + size);
	}

	if (len > 0) {
		printk("%sVendor specific error info has %u bytes:\n", pfx,
		       len);
		print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4, ctx_info,
				len, true);
	}
}