static int sun6i_spi_transfer_one()

in spi-sun6i.c [254:446]


static int sun6i_spi_transfer_one(struct spi_master *master,
				  struct spi_device *spi,
				  struct spi_transfer *tfr)
{
	struct sun6i_spi *sspi = spi_master_get_devdata(master);
	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
	unsigned int start, end, tx_time;
	unsigned int trig_level;
	unsigned int tx_len = 0, rx_len = 0;
	bool use_dma;
	int ret = 0;
	u32 reg;

	if (tfr->len > SUN6I_MAX_XFER_SIZE)
		return -EINVAL;

	reinit_completion(&sspi->done);
	sspi->tx_buf = tfr->tx_buf;
	sspi->rx_buf = tfr->rx_buf;
	sspi->len = tfr->len;
	use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;

	/* Clear pending interrupts */
	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);

	/* Reset FIFO */
	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);

	reg = 0;

	if (!use_dma) {
		/*
		 * Setup FIFO interrupt trigger level
		 * Here we choose 3/4 of the full fifo depth, as it's
		 * the hardcoded value used in old generation of Allwinner
		 * SPI controller. (See spi-sun4i.c)
		 */
		trig_level = sspi->fifo_depth / 4 * 3;
	} else {
		/*
		 * Setup FIFO DMA request trigger level
		 * We choose 1/2 of the full fifo depth, that value will
		 * be used as DMA burst length.
		 */
		trig_level = sspi->fifo_depth / 2;

		if (tfr->tx_buf)
			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
		if (tfr->rx_buf)
			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
	}

	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);

	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);

	/*
	 * Setup the transfer control register: Chip Select,
	 * polarities, etc.
	 */
	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);

	if (spi->mode & SPI_CPOL)
		reg |= SUN6I_TFR_CTL_CPOL;
	else
		reg &= ~SUN6I_TFR_CTL_CPOL;

	if (spi->mode & SPI_CPHA)
		reg |= SUN6I_TFR_CTL_CPHA;
	else
		reg &= ~SUN6I_TFR_CTL_CPHA;

	if (spi->mode & SPI_LSB_FIRST)
		reg |= SUN6I_TFR_CTL_FBS;
	else
		reg &= ~SUN6I_TFR_CTL_FBS;

	/*
	 * If it's a TX only transfer, we don't want to fill the RX
	 * FIFO with bogus data
	 */
	if (sspi->rx_buf) {
		reg &= ~SUN6I_TFR_CTL_DHB;
		rx_len = tfr->len;
	} else {
		reg |= SUN6I_TFR_CTL_DHB;
	}

	/* We want to control the chip select manually */
	reg |= SUN6I_TFR_CTL_CS_MANUAL;

	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);

	/* Ensure that we have a parent clock fast enough */
	mclk_rate = clk_get_rate(sspi->mclk);
	if (mclk_rate < (2 * tfr->speed_hz)) {
		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
		mclk_rate = clk_get_rate(sspi->mclk);
	}

	/*
	 * Setup clock divider.
	 *
	 * We have two choices there. Either we can use the clock
	 * divide rate 1, which is calculated thanks to this formula:
	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
	 * Or we can use CDR2, which is calculated with the formula:
	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
	 * Wether we use the former or the latter is set through the
	 * DRS bit.
	 *
	 * First try CDR2, and if we can't reach the expected
	 * frequency, fall back to CDR1.
	 */
	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
	} else {
		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
		reg = SUN6I_CLK_CTL_CDR1(div);
		tfr->effective_speed_hz = mclk_rate / (1 << div);
	}

	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
	/* Finally enable the bus - doing so before might raise SCK to HIGH */
	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);

	/* Setup the transfer now... */
	if (sspi->tx_buf)
		tx_len = tfr->len;

	/* Setup the counters */
	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);

	if (!use_dma) {
		/* Fill the TX FIFO */
		sun6i_spi_fill_fifo(sspi);
	} else {
		ret = sun6i_spi_prepare_dma(sspi, tfr);
		if (ret) {
			dev_warn(&master->dev,
				 "%s: prepare DMA failed, ret=%d",
				 dev_name(&spi->dev), ret);
			return ret;
		}
	}

	/* Enable the interrupts */
	reg = SUN6I_INT_CTL_TC;

	if (!use_dma) {
		if (rx_len > sspi->fifo_depth)
			reg |= SUN6I_INT_CTL_RF_RDY;
		if (tx_len > sspi->fifo_depth)
			reg |= SUN6I_INT_CTL_TF_ERQ;
	}

	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);

	/* Start the transfer */
	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);

	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
	start = jiffies;
	timeout = wait_for_completion_timeout(&sspi->done,
					      msecs_to_jiffies(tx_time));
	end = jiffies;
	if (!timeout) {
		dev_warn(&master->dev,
			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
			 jiffies_to_msecs(end - start), tx_time);
		ret = -ETIMEDOUT;
	}

	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);

	if (ret && use_dma) {
		dmaengine_terminate_sync(master->dma_rx);
		dmaengine_terminate_sync(master->dma_tx);
	}

	return ret;
}