bolt/lib/Passes/BinaryPasses.cpp (1,455 lines of code) (raw):

//===- bolt/Passes/BinaryPasses.cpp - Binary-level passes -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements multiple passes for binary optimization and analysis. // //===----------------------------------------------------------------------===// #include "bolt/Passes/BinaryPasses.h" #include "bolt/Core/ParallelUtilities.h" #include "bolt/Passes/ReorderAlgorithm.h" #include "bolt/Passes/ReorderFunctions.h" #include "llvm/Support/CommandLine.h" #include <numeric> #include <vector> #define DEBUG_TYPE "bolt-opts" using namespace llvm; using namespace bolt; namespace { const char *dynoStatsOptName(const bolt::DynoStats::Category C) { if (C == bolt::DynoStats::FIRST_DYNO_STAT) return "none"; else if (C == bolt::DynoStats::LAST_DYNO_STAT) return "all"; static std::string OptNames[bolt::DynoStats::LAST_DYNO_STAT + 1]; OptNames[C] = bolt::DynoStats::Description(C); std::replace(OptNames[C].begin(), OptNames[C].end(), ' ', '-'); return OptNames[C].c_str(); } const char *dynoStatsOptDesc(const bolt::DynoStats::Category C) { if (C == bolt::DynoStats::FIRST_DYNO_STAT) return "unsorted"; else if (C == bolt::DynoStats::LAST_DYNO_STAT) return "sorted by all stats"; return bolt::DynoStats::Description(C); } } namespace opts { extern cl::OptionCategory BoltCategory; extern cl::OptionCategory BoltOptCategory; extern cl::opt<bolt::MacroFusionType> AlignMacroOpFusion; extern cl::opt<unsigned> Verbosity; extern cl::opt<bool> EnableBAT; extern cl::opt<unsigned> ExecutionCountThreshold; extern cl::opt<bool> UpdateDebugSections; extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; enum DynoStatsSortOrder : char { Ascending, Descending }; static cl::opt<DynoStatsSortOrder> DynoStatsSortOrderOpt("print-sorted-by-order", cl::desc("use ascending or descending order when printing functions " "ordered by dyno stats"), cl::ZeroOrMore, cl::init(DynoStatsSortOrder::Descending), cl::cat(BoltOptCategory)); cl::list<std::string> HotTextMoveSections("hot-text-move-sections", cl::desc("list of sections containing functions used for hugifying hot text. " "BOLT makes sure these functions are not placed on the same page as " "the hot text. (default=\'.stub,.mover\')."), cl::value_desc("sec1,sec2,sec3,..."), cl::CommaSeparated, cl::ZeroOrMore, cl::cat(BoltCategory)); bool isHotTextMover(const BinaryFunction &Function) { for (std::string &SectionName : opts::HotTextMoveSections) { if (Function.getOriginSectionName() && *Function.getOriginSectionName() == SectionName) return true; } return false; } static cl::opt<bool> MinBranchClusters("min-branch-clusters", cl::desc("use a modified clustering algorithm geared towards minimizing " "branches"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); enum PeepholeOpts : char { PEEP_NONE = 0x0, PEEP_DOUBLE_JUMPS = 0x2, PEEP_TAILCALL_TRAPS = 0x4, PEEP_USELESS_BRANCHES = 0x8, PEEP_ALL = 0xf }; static cl::list<PeepholeOpts> Peepholes("peepholes", cl::CommaSeparated, cl::desc("enable peephole optimizations"), cl::value_desc("opt1,opt2,opt3,..."), cl::values( clEnumValN(PEEP_NONE, "none", "disable peepholes"), clEnumValN(PEEP_DOUBLE_JUMPS, "double-jumps", "remove double jumps when able"), clEnumValN(PEEP_TAILCALL_TRAPS, "tailcall-traps", "insert tail call traps"), clEnumValN(PEEP_USELESS_BRANCHES, "useless-branches", "remove useless conditional branches"), clEnumValN(PEEP_ALL, "all", "enable all peephole optimizations")), cl::ZeroOrMore, cl::cat(BoltOptCategory)); static cl::opt<unsigned> PrintFuncStat("print-function-statistics", cl::desc("print statistics about basic block ordering"), cl::init(0), cl::ZeroOrMore, cl::cat(BoltOptCategory)); static cl::list<bolt::DynoStats::Category> PrintSortedBy("print-sorted-by", cl::CommaSeparated, cl::desc("print functions sorted by order of dyno stats"), cl::value_desc("key1,key2,key3,..."), cl::values( #define D(name, ...) \ clEnumValN(bolt::DynoStats::name, \ dynoStatsOptName(bolt::DynoStats::name), \ dynoStatsOptDesc(bolt::DynoStats::name)), DYNO_STATS #undef D clEnumValN(0xffff, ".", ".") ), cl::ZeroOrMore, cl::cat(BoltOptCategory)); static cl::opt<bool> PrintUnknown("print-unknown", cl::desc("print names of functions with unknown control flow"), cl::init(false), cl::ZeroOrMore, cl::cat(BoltCategory), cl::Hidden); static cl::opt<bool> PrintUnknownCFG("print-unknown-cfg", cl::desc("dump CFG of functions with unknown control flow"), cl::init(false), cl::ZeroOrMore, cl::cat(BoltCategory), cl::ReallyHidden); cl::opt<bolt::ReorderBasicBlocks::LayoutType> ReorderBlocks( "reorder-blocks", cl::desc("change layout of basic blocks in a function"), cl::init(bolt::ReorderBasicBlocks::LT_NONE), cl::values( clEnumValN(bolt::ReorderBasicBlocks::LT_NONE, "none", "do not reorder basic blocks"), clEnumValN(bolt::ReorderBasicBlocks::LT_REVERSE, "reverse", "layout blocks in reverse order"), clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE, "normal", "perform optimal layout based on profile"), clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_BRANCH, "branch-predictor", "perform optimal layout prioritizing branch " "predictions"), clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_CACHE, "cache", "perform optimal layout prioritizing I-cache " "behavior"), clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_EXT_TSP, "cache+", "perform layout optimizing I-cache behavior"), clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_EXT_TSP, "ext-tsp", "perform layout optimizing I-cache behavior"), clEnumValN(bolt::ReorderBasicBlocks::LT_OPTIMIZE_SHUFFLE, "cluster-shuffle", "perform random layout of clusters")), cl::ZeroOrMore, cl::cat(BoltOptCategory)); static cl::opt<unsigned> ReportBadLayout("report-bad-layout", cl::desc("print top <uint> functions with suboptimal code layout on input"), cl::init(0), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt<bool> ReportStaleFuncs("report-stale", cl::desc("print the list of functions with stale profile"), cl::init(false), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); enum SctcModes : char { SctcAlways, SctcPreserveDirection, SctcHeuristic }; static cl::opt<SctcModes> SctcMode("sctc-mode", cl::desc("mode for simplify conditional tail calls"), cl::init(SctcAlways), cl::values(clEnumValN(SctcAlways, "always", "always perform sctc"), clEnumValN(SctcPreserveDirection, "preserve", "only perform sctc when branch direction is " "preserved"), clEnumValN(SctcHeuristic, "heuristic", "use branch prediction data to control sctc")), cl::ZeroOrMore, cl::cat(BoltOptCategory)); static cl::opt<unsigned> StaleThreshold("stale-threshold", cl::desc( "maximum percentage of stale functions to tolerate (default: 100)"), cl::init(100), cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt<unsigned> TSPThreshold("tsp-threshold", cl::desc("maximum number of hot basic blocks in a function for which to use " "a precise TSP solution while re-ordering basic blocks"), cl::init(10), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt<unsigned> TopCalledLimit("top-called-limit", cl::desc("maximum number of functions to print in top called " "functions section"), cl::init(100), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); } // namespace opts namespace llvm { namespace bolt { bool BinaryFunctionPass::shouldOptimize(const BinaryFunction &BF) const { return BF.isSimple() && BF.getState() == BinaryFunction::State::CFG && !BF.isIgnored(); } bool BinaryFunctionPass::shouldPrint(const BinaryFunction &BF) const { return BF.isSimple() && !BF.isIgnored(); } void NormalizeCFG::runOnFunction(BinaryFunction &BF) { uint64_t NumRemoved = 0; uint64_t NumDuplicateEdges = 0; uint64_t NeedsFixBranches = 0; for (BinaryBasicBlock &BB : BF) { if (!BB.empty()) continue; if (BB.isEntryPoint() || BB.isLandingPad()) continue; // Handle a dangling empty block. if (BB.succ_size() == 0) { // If an empty dangling basic block has a predecessor, it could be a // result of codegen for __builtin_unreachable. In such case, do not // remove the block. if (BB.pred_size() == 0) { BB.markValid(false); ++NumRemoved; } continue; } // The block should have just one successor. BinaryBasicBlock *Successor = BB.getSuccessor(); assert(Successor && "invalid CFG encountered"); // Redirect all predecessors to the successor block. while (!BB.pred_empty()) { BinaryBasicBlock *Predecessor = *BB.pred_begin(); if (Predecessor->hasJumpTable()) break; if (Predecessor == Successor) break; BinaryBasicBlock::BinaryBranchInfo &BI = Predecessor->getBranchInfo(BB); Predecessor->replaceSuccessor(&BB, Successor, BI.Count, BI.MispredictedCount); // We need to fix branches even if we failed to replace all successors // and remove the block. NeedsFixBranches = true; } if (BB.pred_empty()) { BB.removeAllSuccessors(); BB.markValid(false); ++NumRemoved; } } if (NumRemoved) BF.eraseInvalidBBs(); // Check for duplicate successors. Do it after the empty block elimination as // we can get more duplicate successors. for (BinaryBasicBlock &BB : BF) if (!BB.hasJumpTable() && BB.succ_size() == 2 && BB.getConditionalSuccessor(false) == BB.getConditionalSuccessor(true)) ++NumDuplicateEdges; // fixBranches() will get rid of duplicate edges and update jump instructions. if (NumDuplicateEdges || NeedsFixBranches) BF.fixBranches(); NumDuplicateEdgesMerged += NumDuplicateEdges; NumBlocksRemoved += NumRemoved; } void NormalizeCFG::runOnFunctions(BinaryContext &BC) { ParallelUtilities::runOnEachFunction( BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR, [&](BinaryFunction &BF) { runOnFunction(BF); }, [&](const BinaryFunction &BF) { return !shouldOptimize(BF); }, "NormalizeCFG"); if (NumBlocksRemoved) outs() << "BOLT-INFO: removed " << NumBlocksRemoved << " empty block" << (NumBlocksRemoved == 1 ? "" : "s") << '\n'; if (NumDuplicateEdgesMerged) outs() << "BOLT-INFO: merged " << NumDuplicateEdgesMerged << " duplicate CFG edge" << (NumDuplicateEdgesMerged == 1 ? "" : "s") << '\n'; } void EliminateUnreachableBlocks::runOnFunction(BinaryFunction &Function) { if (Function.layout_size() > 0) { unsigned Count; uint64_t Bytes; Function.markUnreachableBlocks(); LLVM_DEBUG({ for (BinaryBasicBlock *BB : Function.layout()) { if (!BB->isValid()) { dbgs() << "BOLT-INFO: UCE found unreachable block " << BB->getName() << " in function " << Function << "\n"; Function.dump(); } } }); std::tie(Count, Bytes) = Function.eraseInvalidBBs(); DeletedBlocks += Count; DeletedBytes += Bytes; if (Count) { Modified.insert(&Function); if (opts::Verbosity > 0) outs() << "BOLT-INFO: Removed " << Count << " dead basic block(s) accounting for " << Bytes << " bytes in function " << Function << '\n'; } } } void EliminateUnreachableBlocks::runOnFunctions(BinaryContext &BC) { for (auto &It : BC.getBinaryFunctions()) { BinaryFunction &Function = It.second; if (shouldOptimize(Function)) runOnFunction(Function); } outs() << "BOLT-INFO: UCE removed " << DeletedBlocks << " blocks and " << DeletedBytes << " bytes of code.\n"; } bool ReorderBasicBlocks::shouldPrint(const BinaryFunction &BF) const { return (BinaryFunctionPass::shouldPrint(BF) && opts::ReorderBlocks != ReorderBasicBlocks::LT_NONE); } bool ReorderBasicBlocks::shouldOptimize(const BinaryFunction &BF) const { // Apply execution count threshold if (BF.getKnownExecutionCount() < opts::ExecutionCountThreshold) return false; return BinaryFunctionPass::shouldOptimize(BF); } void ReorderBasicBlocks::runOnFunctions(BinaryContext &BC) { if (opts::ReorderBlocks == ReorderBasicBlocks::LT_NONE) return; std::atomic<uint64_t> ModifiedFuncCount{0}; ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { modifyFunctionLayout(BF, opts::ReorderBlocks, opts::MinBranchClusters); if (BF.hasLayoutChanged()) ++ModifiedFuncCount; }; ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) { return !shouldOptimize(BF); }; ParallelUtilities::runOnEachFunction( BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR, WorkFun, SkipFunc, "ReorderBasicBlocks"); outs() << "BOLT-INFO: basic block reordering modified layout of " << format("%zu (%.2lf%%) functions\n", ModifiedFuncCount.load(), 100.0 * ModifiedFuncCount.load() / BC.getBinaryFunctions().size()); if (opts::PrintFuncStat > 0) { raw_ostream &OS = outs(); // Copy all the values into vector in order to sort them std::map<uint64_t, BinaryFunction &> ScoreMap; auto &BFs = BC.getBinaryFunctions(); for (auto It = BFs.begin(); It != BFs.end(); ++It) ScoreMap.insert(std::pair<uint64_t, BinaryFunction &>( It->second.getFunctionScore(), It->second)); OS << "\nBOLT-INFO: Printing Function Statistics:\n\n"; OS << " There are " << BFs.size() << " functions in total. \n"; OS << " Number of functions being modified: " << ModifiedFuncCount.load() << "\n"; OS << " User asks for detailed information on top " << opts::PrintFuncStat << " functions. (Ranked by function score)" << "\n\n"; uint64_t I = 0; for (std::map<uint64_t, BinaryFunction &>::reverse_iterator Rit = ScoreMap.rbegin(); Rit != ScoreMap.rend() && I < opts::PrintFuncStat; ++Rit, ++I) { BinaryFunction &Function = Rit->second; OS << " Information for function of top: " << (I + 1) << ": \n"; OS << " Function Score is: " << Function.getFunctionScore() << "\n"; OS << " There are " << Function.size() << " number of blocks in this function.\n"; OS << " There are " << Function.getInstructionCount() << " number of instructions in this function.\n"; OS << " The edit distance for this function is: " << Function.getEditDistance() << "\n\n"; } } } void ReorderBasicBlocks::modifyFunctionLayout(BinaryFunction &BF, LayoutType Type, bool MinBranchClusters) const { if (BF.size() == 0 || Type == LT_NONE) return; BinaryFunction::BasicBlockOrderType NewLayout; std::unique_ptr<ReorderAlgorithm> Algo; // Cannot do optimal layout without profile. if (Type != LT_REVERSE && !BF.hasValidProfile()) return; if (Type == LT_REVERSE) { Algo.reset(new ReverseReorderAlgorithm()); } else if (BF.size() <= opts::TSPThreshold && Type != LT_OPTIMIZE_SHUFFLE) { // Work on optimal solution if problem is small enough LLVM_DEBUG(dbgs() << "finding optimal block layout for " << BF << "\n"); Algo.reset(new TSPReorderAlgorithm()); } else { LLVM_DEBUG(dbgs() << "running block layout heuristics on " << BF << "\n"); std::unique_ptr<ClusterAlgorithm> CAlgo; if (MinBranchClusters) CAlgo.reset(new MinBranchGreedyClusterAlgorithm()); else CAlgo.reset(new PHGreedyClusterAlgorithm()); switch (Type) { case LT_OPTIMIZE: Algo.reset(new OptimizeReorderAlgorithm(std::move(CAlgo))); break; case LT_OPTIMIZE_BRANCH: Algo.reset(new OptimizeBranchReorderAlgorithm(std::move(CAlgo))); break; case LT_OPTIMIZE_CACHE: Algo.reset(new OptimizeCacheReorderAlgorithm(std::move(CAlgo))); break; case LT_OPTIMIZE_EXT_TSP: Algo.reset(new ExtTSPReorderAlgorithm()); break; case LT_OPTIMIZE_SHUFFLE: Algo.reset(new RandomClusterReorderAlgorithm(std::move(CAlgo))); break; default: llvm_unreachable("unexpected layout type"); } } Algo->reorderBasicBlocks(BF, NewLayout); BF.updateBasicBlockLayout(NewLayout); } void FixupBranches::runOnFunctions(BinaryContext &BC) { for (auto &It : BC.getBinaryFunctions()) { BinaryFunction &Function = It.second; if (!BC.shouldEmit(Function) || !Function.isSimple()) continue; Function.fixBranches(); } } void FinalizeFunctions::runOnFunctions(BinaryContext &BC) { ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { if (!BF.finalizeCFIState()) { if (BC.HasRelocations) { errs() << "BOLT-ERROR: unable to fix CFI state for function " << BF << ". Exiting.\n"; exit(1); } BF.setSimple(false); return; } BF.setFinalized(); // Update exception handling information. BF.updateEHRanges(); }; ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { return !BC.shouldEmit(BF); }; ParallelUtilities::runOnEachFunction( BC, ParallelUtilities::SchedulingPolicy::SP_CONSTANT, WorkFun, SkipPredicate, "FinalizeFunctions"); } void CheckLargeFunctions::runOnFunctions(BinaryContext &BC) { if (BC.HasRelocations) return; if (!opts::UpdateDebugSections) return; // If the function wouldn't fit, mark it as non-simple. Otherwise, we may emit // incorrect debug info. ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { uint64_t HotSize, ColdSize; std::tie(HotSize, ColdSize) = BC.calculateEmittedSize(BF, /*FixBranches=*/false); if (HotSize > BF.getMaxSize()) BF.setSimple(false); }; ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) { return !shouldOptimize(BF); }; ParallelUtilities::runOnEachFunction( BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, SkipFunc, "CheckLargeFunctions"); } bool CheckLargeFunctions::shouldOptimize(const BinaryFunction &BF) const { // Unlike other passes, allow functions in non-CFG state. return BF.isSimple() && !BF.isIgnored(); } void LowerAnnotations::runOnFunctions(BinaryContext &BC) { std::vector<std::pair<MCInst *, uint32_t>> PreservedOffsetAnnotations; for (auto &It : BC.getBinaryFunctions()) { BinaryFunction &BF = It.second; int64_t CurrentGnuArgsSize = 0; // Have we crossed hot/cold border for split functions? bool SeenCold = false; for (BinaryBasicBlock *BB : BF.layout()) { if (BB->isCold() && !SeenCold) { SeenCold = true; CurrentGnuArgsSize = 0; } // First convert GnuArgsSize annotations into CFIs. This may change instr // pointers, so do it before recording ptrs for preserved annotations if (BF.usesGnuArgsSize()) { for (auto II = BB->begin(); II != BB->end(); ++II) { if (!BC.MIB->isInvoke(*II)) continue; const int64_t NewGnuArgsSize = BC.MIB->getGnuArgsSize(*II); assert(NewGnuArgsSize >= 0 && "expected non-negative GNU_args_size"); if (NewGnuArgsSize != CurrentGnuArgsSize) { auto InsertII = BF.addCFIInstruction( BB, II, MCCFIInstruction::createGnuArgsSize(nullptr, NewGnuArgsSize)); CurrentGnuArgsSize = NewGnuArgsSize; II = std::next(InsertII); } } } // Now record preserved annotations separately and then strip annotations. for (auto II = BB->begin(); II != BB->end(); ++II) { if (BF.requiresAddressTranslation() && BC.MIB->hasAnnotation(*II, "Offset")) PreservedOffsetAnnotations.emplace_back( &(*II), BC.MIB->getAnnotationAs<uint32_t>(*II, "Offset")); BC.MIB->stripAnnotations(*II); } } } for (BinaryFunction *BF : BC.getInjectedBinaryFunctions()) for (BinaryBasicBlock &BB : *BF) for (MCInst &Instruction : BB) BC.MIB->stripAnnotations(Instruction); // Release all memory taken by annotations BC.MIB->freeAnnotations(); // Reinsert preserved annotations we need during code emission. for (const std::pair<MCInst *, uint32_t> &Item : PreservedOffsetAnnotations) BC.MIB->addAnnotation<uint32_t>(*Item.first, "Offset", Item.second); } namespace { // This peephole fixes jump instructions that jump to another basic // block with a single jump instruction, e.g. // // B0: ... // jmp B1 (or jcc B1) // // B1: jmp B2 // // -> // // B0: ... // jmp B2 (or jcc B2) // uint64_t fixDoubleJumps(BinaryFunction &Function, bool MarkInvalid) { uint64_t NumDoubleJumps = 0; MCContext *Ctx = Function.getBinaryContext().Ctx.get(); MCPlusBuilder *MIB = Function.getBinaryContext().MIB.get(); for (BinaryBasicBlock &BB : Function) { auto checkAndPatch = [&](BinaryBasicBlock *Pred, BinaryBasicBlock *Succ, const MCSymbol *SuccSym) { // Ignore infinite loop jumps or fallthrough tail jumps. if (Pred == Succ || Succ == &BB) return false; if (Succ) { const MCSymbol *TBB = nullptr; const MCSymbol *FBB = nullptr; MCInst *CondBranch = nullptr; MCInst *UncondBranch = nullptr; bool Res = Pred->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); if (!Res) { LLVM_DEBUG(dbgs() << "analyzeBranch failed in peepholes in block:\n"; Pred->dump()); return false; } Pred->replaceSuccessor(&BB, Succ); // We must patch up any existing branch instructions to match up // with the new successor. assert((CondBranch || (!CondBranch && Pred->succ_size() == 1)) && "Predecessor block has inconsistent number of successors"); if (CondBranch && MIB->getTargetSymbol(*CondBranch) == BB.getLabel()) { MIB->replaceBranchTarget(*CondBranch, Succ->getLabel(), Ctx); } else if (UncondBranch && MIB->getTargetSymbol(*UncondBranch) == BB.getLabel()) { MIB->replaceBranchTarget(*UncondBranch, Succ->getLabel(), Ctx); } else if (!UncondBranch) { assert(Function.getBasicBlockAfter(Pred, false) != Succ && "Don't add an explicit jump to a fallthrough block."); Pred->addBranchInstruction(Succ); } } else { // Succ will be null in the tail call case. In this case we // need to explicitly add a tail call instruction. MCInst *Branch = Pred->getLastNonPseudoInstr(); if (Branch && MIB->isUnconditionalBranch(*Branch)) { assert(MIB->getTargetSymbol(*Branch) == BB.getLabel()); Pred->removeSuccessor(&BB); Pred->eraseInstruction(Pred->findInstruction(Branch)); Pred->addTailCallInstruction(SuccSym); } else { return false; } } ++NumDoubleJumps; LLVM_DEBUG(dbgs() << "Removed double jump in " << Function << " from " << Pred->getName() << " -> " << BB.getName() << " to " << Pred->getName() << " -> " << SuccSym->getName() << (!Succ ? " (tail)\n" : "\n")); return true; }; if (BB.getNumNonPseudos() != 1 || BB.isLandingPad()) continue; MCInst *Inst = BB.getFirstNonPseudoInstr(); const bool IsTailCall = MIB->isTailCall(*Inst); if (!MIB->isUnconditionalBranch(*Inst) && !IsTailCall) continue; // If we operate after SCTC make sure it's not a conditional tail call. if (IsTailCall && MIB->isConditionalBranch(*Inst)) continue; const MCSymbol *SuccSym = MIB->getTargetSymbol(*Inst); BinaryBasicBlock *Succ = BB.getSuccessor(); if (((!Succ || &BB == Succ) && !IsTailCall) || (IsTailCall && !SuccSym)) continue; std::vector<BinaryBasicBlock *> Preds = {BB.pred_begin(), BB.pred_end()}; for (BinaryBasicBlock *Pred : Preds) { if (Pred->isLandingPad()) continue; if (Pred->getSuccessor() == &BB || (Pred->getConditionalSuccessor(true) == &BB && !IsTailCall) || Pred->getConditionalSuccessor(false) == &BB) if (checkAndPatch(Pred, Succ, SuccSym) && MarkInvalid) BB.markValid(BB.pred_size() != 0 || BB.isLandingPad() || BB.isEntryPoint()); } } return NumDoubleJumps; } } // namespace bool SimplifyConditionalTailCalls::shouldRewriteBranch( const BinaryBasicBlock *PredBB, const MCInst &CondBranch, const BinaryBasicBlock *BB, const bool DirectionFlag) { if (BeenOptimized.count(PredBB)) return false; const bool IsForward = BinaryFunction::isForwardBranch(PredBB, BB); if (IsForward) ++NumOrigForwardBranches; else ++NumOrigBackwardBranches; if (opts::SctcMode == opts::SctcAlways) return true; if (opts::SctcMode == opts::SctcPreserveDirection) return IsForward == DirectionFlag; const ErrorOr<std::pair<double, double>> Frequency = PredBB->getBranchStats(BB); // It's ok to rewrite the conditional branch if the new target will be // a backward branch. // If no data available for these branches, then it should be ok to // do the optimization since it will reduce code size. if (Frequency.getError()) return true; // TODO: should this use misprediction frequency instead? const bool Result = (IsForward && Frequency.get().first >= 0.5) || (!IsForward && Frequency.get().first <= 0.5); return Result == DirectionFlag; } uint64_t SimplifyConditionalTailCalls::fixTailCalls(BinaryFunction &BF) { // Need updated indices to correctly detect branch' direction. BF.updateLayoutIndices(); BF.markUnreachableBlocks(); MCPlusBuilder *MIB = BF.getBinaryContext().MIB.get(); MCContext *Ctx = BF.getBinaryContext().Ctx.get(); uint64_t NumLocalCTCCandidates = 0; uint64_t NumLocalCTCs = 0; uint64_t LocalCTCTakenCount = 0; uint64_t LocalCTCExecCount = 0; std::vector<std::pair<BinaryBasicBlock *, const BinaryBasicBlock *>> NeedsUncondBranch; // Will block be deleted by UCE? auto isValid = [](const BinaryBasicBlock *BB) { return (BB->pred_size() != 0 || BB->isLandingPad() || BB->isEntryPoint()); }; for (BinaryBasicBlock *BB : BF.layout()) { // Locate BB with a single direct tail-call instruction. if (BB->getNumNonPseudos() != 1) continue; MCInst *Instr = BB->getFirstNonPseudoInstr(); if (!MIB->isTailCall(*Instr) || MIB->isConditionalBranch(*Instr)) continue; const MCSymbol *CalleeSymbol = MIB->getTargetSymbol(*Instr); if (!CalleeSymbol) continue; // Detect direction of the possible conditional tail call. const bool IsForwardCTC = BF.isForwardCall(CalleeSymbol); // Iterate through all predecessors. for (BinaryBasicBlock *PredBB : BB->predecessors()) { BinaryBasicBlock *CondSucc = PredBB->getConditionalSuccessor(true); if (!CondSucc) continue; ++NumLocalCTCCandidates; const MCSymbol *TBB = nullptr; const MCSymbol *FBB = nullptr; MCInst *CondBranch = nullptr; MCInst *UncondBranch = nullptr; bool Result = PredBB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); // analyzeBranch() can fail due to unusual branch instructions, e.g. jrcxz if (!Result) { LLVM_DEBUG(dbgs() << "analyzeBranch failed in SCTC in block:\n"; PredBB->dump()); continue; } assert(Result && "internal error analyzing conditional branch"); assert(CondBranch && "conditional branch expected"); // It's possible that PredBB is also a successor to BB that may have // been processed by a previous iteration of the SCTC loop, in which // case it may have been marked invalid. We should skip rewriting in // this case. if (!PredBB->isValid()) { assert(PredBB->isSuccessor(BB) && "PredBB should be valid if it is not a successor to BB"); continue; } // We don't want to reverse direction of the branch in new order // without further profile analysis. const bool DirectionFlag = CondSucc == BB ? IsForwardCTC : !IsForwardCTC; if (!shouldRewriteBranch(PredBB, *CondBranch, BB, DirectionFlag)) continue; // Record this block so that we don't try to optimize it twice. BeenOptimized.insert(PredBB); uint64_t Count = 0; if (CondSucc != BB) { // Patch the new target address into the conditional branch. MIB->reverseBranchCondition(*CondBranch, CalleeSymbol, Ctx); // Since we reversed the condition on the branch we need to change // the target for the unconditional branch or add a unconditional // branch to the old target. This has to be done manually since // fixupBranches is not called after SCTC. NeedsUncondBranch.emplace_back(PredBB, CondSucc); Count = PredBB->getFallthroughBranchInfo().Count; } else { // Change destination of the conditional branch. MIB->replaceBranchTarget(*CondBranch, CalleeSymbol, Ctx); Count = PredBB->getTakenBranchInfo().Count; } const uint64_t CTCTakenFreq = Count == BinaryBasicBlock::COUNT_NO_PROFILE ? 0 : Count; // Annotate it, so "isCall" returns true for this jcc MIB->setConditionalTailCall(*CondBranch); // Add info abount the conditional tail call frequency, otherwise this // info will be lost when we delete the associated BranchInfo entry auto &CTCAnnotation = MIB->getOrCreateAnnotationAs<uint64_t>(*CondBranch, "CTCTakenCount"); CTCAnnotation = CTCTakenFreq; // Remove the unused successor which may be eliminated later // if there are no other users. PredBB->removeSuccessor(BB); // Update BB execution count if (CTCTakenFreq && CTCTakenFreq <= BB->getKnownExecutionCount()) BB->setExecutionCount(BB->getExecutionCount() - CTCTakenFreq); else if (CTCTakenFreq > BB->getKnownExecutionCount()) BB->setExecutionCount(0); ++NumLocalCTCs; LocalCTCTakenCount += CTCTakenFreq; LocalCTCExecCount += PredBB->getKnownExecutionCount(); } // Remove the block from CFG if all predecessors were removed. BB->markValid(isValid(BB)); } // Add unconditional branches at the end of BBs to new successors // as long as the successor is not a fallthrough. for (auto &Entry : NeedsUncondBranch) { BinaryBasicBlock *PredBB = Entry.first; const BinaryBasicBlock *CondSucc = Entry.second; const MCSymbol *TBB = nullptr; const MCSymbol *FBB = nullptr; MCInst *CondBranch = nullptr; MCInst *UncondBranch = nullptr; PredBB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); // Find the next valid block. Invalid blocks will be deleted // so they shouldn't be considered fallthrough targets. const BinaryBasicBlock *NextBlock = BF.getBasicBlockAfter(PredBB, false); while (NextBlock && !isValid(NextBlock)) NextBlock = BF.getBasicBlockAfter(NextBlock, false); // Get the unconditional successor to this block. const BinaryBasicBlock *PredSucc = PredBB->getSuccessor(); assert(PredSucc && "The other branch should be a tail call"); const bool HasFallthrough = (NextBlock && PredSucc == NextBlock); if (UncondBranch) { if (HasFallthrough) PredBB->eraseInstruction(PredBB->findInstruction(UncondBranch)); else MIB->replaceBranchTarget(*UncondBranch, CondSucc->getLabel(), Ctx); } else if (!HasFallthrough) { MCInst Branch; MIB->createUncondBranch(Branch, CondSucc->getLabel(), Ctx); PredBB->addInstruction(Branch); } } if (NumLocalCTCs > 0) { NumDoubleJumps += fixDoubleJumps(BF, true); // Clean-up unreachable tail-call blocks. const std::pair<unsigned, uint64_t> Stats = BF.eraseInvalidBBs(); DeletedBlocks += Stats.first; DeletedBytes += Stats.second; assert(BF.validateCFG()); } LLVM_DEBUG(dbgs() << "BOLT: created " << NumLocalCTCs << " conditional tail calls from a total of " << NumLocalCTCCandidates << " candidates in function " << BF << ". CTCs execution count for this function is " << LocalCTCExecCount << " and CTC taken count is " << LocalCTCTakenCount << "\n";); NumTailCallsPatched += NumLocalCTCs; NumCandidateTailCalls += NumLocalCTCCandidates; CTCExecCount += LocalCTCExecCount; CTCTakenCount += LocalCTCTakenCount; return NumLocalCTCs > 0; } void SimplifyConditionalTailCalls::runOnFunctions(BinaryContext &BC) { if (!BC.isX86()) return; for (auto &It : BC.getBinaryFunctions()) { BinaryFunction &Function = It.second; if (!shouldOptimize(Function)) continue; if (fixTailCalls(Function)) { Modified.insert(&Function); Function.setHasCanonicalCFG(false); } } outs() << "BOLT-INFO: SCTC: patched " << NumTailCallsPatched << " tail calls (" << NumOrigForwardBranches << " forward)" << " tail calls (" << NumOrigBackwardBranches << " backward)" << " from a total of " << NumCandidateTailCalls << " while removing " << NumDoubleJumps << " double jumps" << " and removing " << DeletedBlocks << " basic blocks" << " totalling " << DeletedBytes << " bytes of code. CTCs total execution count is " << CTCExecCount << " and the number of times CTCs are taken is " << CTCTakenCount << ".\n"; } uint64_t ShortenInstructions::shortenInstructions(BinaryFunction &Function) { uint64_t Count = 0; const BinaryContext &BC = Function.getBinaryContext(); for (BinaryBasicBlock &BB : Function) { for (MCInst &Inst : BB) { MCInst OriginalInst; if (opts::Verbosity > 2) OriginalInst = Inst; if (!BC.MIB->shortenInstruction(Inst)) continue; if (opts::Verbosity > 2) { outs() << "BOLT-INFO: shortening:\nBOLT-INFO: "; BC.printInstruction(outs(), OriginalInst, 0, &Function); outs() << "BOLT-INFO: to:"; BC.printInstruction(outs(), Inst, 0, &Function); } ++Count; } } return Count; } void ShortenInstructions::runOnFunctions(BinaryContext &BC) { std::atomic<uint64_t> NumShortened{0}; if (!BC.isX86()) return; ParallelUtilities::runOnEachFunction( BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, [&](BinaryFunction &BF) { NumShortened += shortenInstructions(BF); }, nullptr, "ShortenInstructions"); outs() << "BOLT-INFO: " << NumShortened << " instructions were shortened\n"; } void Peepholes::addTailcallTraps(BinaryFunction &Function) { MCPlusBuilder *MIB = Function.getBinaryContext().MIB.get(); for (BinaryBasicBlock &BB : Function) { MCInst *Inst = BB.getLastNonPseudoInstr(); if (Inst && MIB->isTailCall(*Inst) && MIB->isIndirectBranch(*Inst)) { MCInst Trap; if (MIB->createTrap(Trap)) { BB.addInstruction(Trap); ++TailCallTraps; } } } } void Peepholes::removeUselessCondBranches(BinaryFunction &Function) { for (BinaryBasicBlock &BB : Function) { if (BB.succ_size() != 2) continue; BinaryBasicBlock *CondBB = BB.getConditionalSuccessor(true); BinaryBasicBlock *UncondBB = BB.getConditionalSuccessor(false); if (CondBB != UncondBB) continue; const MCSymbol *TBB = nullptr; const MCSymbol *FBB = nullptr; MCInst *CondBranch = nullptr; MCInst *UncondBranch = nullptr; bool Result = BB.analyzeBranch(TBB, FBB, CondBranch, UncondBranch); // analyzeBranch() can fail due to unusual branch instructions, // e.g. jrcxz, or jump tables (indirect jump). if (!Result || !CondBranch) continue; BB.removeDuplicateConditionalSuccessor(CondBranch); ++NumUselessCondBranches; } } void Peepholes::runOnFunctions(BinaryContext &BC) { const char Opts = std::accumulate( opts::Peepholes.begin(), opts::Peepholes.end(), 0, [](const char A, const opts::PeepholeOpts B) { return A | B; }); if (Opts == opts::PEEP_NONE || !BC.isX86()) return; for (auto &It : BC.getBinaryFunctions()) { BinaryFunction &Function = It.second; if (shouldOptimize(Function)) { if (Opts & opts::PEEP_DOUBLE_JUMPS) NumDoubleJumps += fixDoubleJumps(Function, false); if (Opts & opts::PEEP_TAILCALL_TRAPS) addTailcallTraps(Function); if (Opts & opts::PEEP_USELESS_BRANCHES) removeUselessCondBranches(Function); assert(Function.validateCFG()); } } outs() << "BOLT-INFO: Peephole: " << NumDoubleJumps << " double jumps patched.\n" << "BOLT-INFO: Peephole: " << TailCallTraps << " tail call traps inserted.\n" << "BOLT-INFO: Peephole: " << NumUselessCondBranches << " useless conditional branches removed.\n"; } bool SimplifyRODataLoads::simplifyRODataLoads(BinaryFunction &BF) { BinaryContext &BC = BF.getBinaryContext(); MCPlusBuilder *MIB = BC.MIB.get(); uint64_t NumLocalLoadsSimplified = 0; uint64_t NumDynamicLocalLoadsSimplified = 0; uint64_t NumLocalLoadsFound = 0; uint64_t NumDynamicLocalLoadsFound = 0; for (BinaryBasicBlock *BB : BF.layout()) { for (MCInst &Inst : *BB) { unsigned Opcode = Inst.getOpcode(); const MCInstrDesc &Desc = BC.MII->get(Opcode); // Skip instructions that do not load from memory. if (!Desc.mayLoad()) continue; // Try to statically evaluate the target memory address; uint64_t TargetAddress; if (MIB->hasPCRelOperand(Inst)) { // Try to find the symbol that corresponds to the PC-relative operand. MCOperand *DispOpI = MIB->getMemOperandDisp(Inst); assert(DispOpI != Inst.end() && "expected PC-relative displacement"); assert(DispOpI->isExpr() && "found PC-relative with non-symbolic displacement"); // Get displacement symbol. const MCSymbol *DisplSymbol; uint64_t DisplOffset; std::tie(DisplSymbol, DisplOffset) = MIB->getTargetSymbolInfo(DispOpI->getExpr()); if (!DisplSymbol) continue; // Look up the symbol address in the global symbols map of the binary // context object. BinaryData *BD = BC.getBinaryDataByName(DisplSymbol->getName()); if (!BD) continue; TargetAddress = BD->getAddress() + DisplOffset; } else if (!MIB->evaluateMemOperandTarget(Inst, TargetAddress)) { continue; } // Get the contents of the section containing the target address of the // memory operand. We are only interested in read-only sections. ErrorOr<BinarySection &> DataSection = BC.getSectionForAddress(TargetAddress); if (!DataSection || !DataSection->isReadOnly()) continue; if (BC.getRelocationAt(TargetAddress) || BC.getDynamicRelocationAt(TargetAddress)) continue; uint32_t Offset = TargetAddress - DataSection->getAddress(); StringRef ConstantData = DataSection->getContents(); ++NumLocalLoadsFound; if (BB->hasProfile()) NumDynamicLocalLoadsFound += BB->getExecutionCount(); if (MIB->replaceMemOperandWithImm(Inst, ConstantData, Offset)) { ++NumLocalLoadsSimplified; if (BB->hasProfile()) NumDynamicLocalLoadsSimplified += BB->getExecutionCount(); } } } NumLoadsFound += NumLocalLoadsFound; NumDynamicLoadsFound += NumDynamicLocalLoadsFound; NumLoadsSimplified += NumLocalLoadsSimplified; NumDynamicLoadsSimplified += NumDynamicLocalLoadsSimplified; return NumLocalLoadsSimplified > 0; } void SimplifyRODataLoads::runOnFunctions(BinaryContext &BC) { for (auto &It : BC.getBinaryFunctions()) { BinaryFunction &Function = It.second; if (shouldOptimize(Function) && simplifyRODataLoads(Function)) Modified.insert(&Function); } outs() << "BOLT-INFO: simplified " << NumLoadsSimplified << " out of " << NumLoadsFound << " loads from a statically computed address.\n" << "BOLT-INFO: dynamic loads simplified: " << NumDynamicLoadsSimplified << "\n" << "BOLT-INFO: dynamic loads found: " << NumDynamicLoadsFound << "\n"; } void AssignSections::runOnFunctions(BinaryContext &BC) { for (BinaryFunction *Function : BC.getInjectedBinaryFunctions()) { Function->setCodeSectionName(BC.getInjectedCodeSectionName()); Function->setColdCodeSectionName(BC.getInjectedColdCodeSectionName()); } // In non-relocation mode functions have pre-assigned section names. if (!BC.HasRelocations) return; const bool UseColdSection = BC.NumProfiledFuncs > 0 || opts::ReorderFunctions == ReorderFunctions::RT_USER; for (auto &BFI : BC.getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (opts::isHotTextMover(Function)) { Function.setCodeSectionName(BC.getHotTextMoverSectionName()); Function.setColdCodeSectionName(BC.getHotTextMoverSectionName()); continue; } if (!UseColdSection || Function.hasValidIndex() || Function.hasValidProfile()) Function.setCodeSectionName(BC.getMainCodeSectionName()); else Function.setCodeSectionName(BC.getColdCodeSectionName()); if (Function.isSplit()) Function.setColdCodeSectionName(BC.getColdCodeSectionName()); } } void PrintProfileStats::runOnFunctions(BinaryContext &BC) { double FlowImbalanceMean = 0.0; size_t NumBlocksConsidered = 0; double WorstBias = 0.0; const BinaryFunction *WorstBiasFunc = nullptr; // For each function CFG, we fill an IncomingMap with the sum of the frequency // of incoming edges for each BB. Likewise for each OutgoingMap and the sum // of the frequency of outgoing edges. using FlowMapTy = std::unordered_map<const BinaryBasicBlock *, uint64_t>; std::unordered_map<const BinaryFunction *, FlowMapTy> TotalIncomingMaps; std::unordered_map<const BinaryFunction *, FlowMapTy> TotalOutgoingMaps; // Compute mean for (const auto &BFI : BC.getBinaryFunctions()) { const BinaryFunction &Function = BFI.second; if (Function.empty() || !Function.isSimple()) continue; FlowMapTy &IncomingMap = TotalIncomingMaps[&Function]; FlowMapTy &OutgoingMap = TotalOutgoingMaps[&Function]; for (const BinaryBasicBlock &BB : Function) { uint64_t TotalOutgoing = 0ULL; auto SuccBIIter = BB.branch_info_begin(); for (BinaryBasicBlock *Succ : BB.successors()) { uint64_t Count = SuccBIIter->Count; if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0) { ++SuccBIIter; continue; } TotalOutgoing += Count; IncomingMap[Succ] += Count; ++SuccBIIter; } OutgoingMap[&BB] = TotalOutgoing; } size_t NumBlocks = 0; double Mean = 0.0; for (const BinaryBasicBlock &BB : Function) { // Do not compute score for low frequency blocks, entry or exit blocks if (IncomingMap[&BB] < 100 || OutgoingMap[&BB] == 0 || BB.isEntryPoint()) continue; ++NumBlocks; const double Difference = (double)OutgoingMap[&BB] - IncomingMap[&BB]; Mean += fabs(Difference / IncomingMap[&BB]); } FlowImbalanceMean += Mean; NumBlocksConsidered += NumBlocks; if (!NumBlocks) continue; double FuncMean = Mean / NumBlocks; if (FuncMean > WorstBias) { WorstBias = FuncMean; WorstBiasFunc = &Function; } } if (NumBlocksConsidered > 0) FlowImbalanceMean /= NumBlocksConsidered; // Compute standard deviation NumBlocksConsidered = 0; double FlowImbalanceVar = 0.0; for (const auto &BFI : BC.getBinaryFunctions()) { const BinaryFunction &Function = BFI.second; if (Function.empty() || !Function.isSimple()) continue; FlowMapTy &IncomingMap = TotalIncomingMaps[&Function]; FlowMapTy &OutgoingMap = TotalOutgoingMaps[&Function]; for (const BinaryBasicBlock &BB : Function) { if (IncomingMap[&BB] < 100 || OutgoingMap[&BB] == 0) continue; ++NumBlocksConsidered; const double Difference = (double)OutgoingMap[&BB] - IncomingMap[&BB]; FlowImbalanceVar += pow(fabs(Difference / IncomingMap[&BB]) - FlowImbalanceMean, 2); } } if (NumBlocksConsidered) { FlowImbalanceVar /= NumBlocksConsidered; FlowImbalanceVar = sqrt(FlowImbalanceVar); } // Report to user outs() << format("BOLT-INFO: Profile bias score: %.4lf%% StDev: %.4lf%%\n", (100.0 * FlowImbalanceMean), (100.0 * FlowImbalanceVar)); if (WorstBiasFunc && opts::Verbosity >= 1) { outs() << "Worst average bias observed in " << WorstBiasFunc->getPrintName() << "\n"; LLVM_DEBUG(WorstBiasFunc->dump()); } } void PrintProgramStats::runOnFunctions(BinaryContext &BC) { uint64_t NumRegularFunctions = 0; uint64_t NumStaleProfileFunctions = 0; uint64_t NumNonSimpleProfiledFunctions = 0; uint64_t NumUnknownControlFlowFunctions = 0; uint64_t TotalSampleCount = 0; uint64_t StaleSampleCount = 0; std::vector<const BinaryFunction *> ProfiledFunctions; const char *StaleFuncsHeader = "BOLT-INFO: Functions with stale profile:\n"; for (auto &BFI : BC.getBinaryFunctions()) { const BinaryFunction &Function = BFI.second; // Ignore PLT functions for stats. if (Function.isPLTFunction()) continue; ++NumRegularFunctions; if (!Function.isSimple()) { if (Function.hasProfile()) ++NumNonSimpleProfiledFunctions; continue; } if (Function.hasUnknownControlFlow()) { if (opts::PrintUnknownCFG) Function.dump(); else if (opts::PrintUnknown) errs() << "function with unknown control flow: " << Function << '\n'; ++NumUnknownControlFlowFunctions; } if (!Function.hasProfile()) continue; uint64_t SampleCount = Function.getRawBranchCount(); TotalSampleCount += SampleCount; if (Function.hasValidProfile()) { ProfiledFunctions.push_back(&Function); } else { if (opts::ReportStaleFuncs) { outs() << StaleFuncsHeader; StaleFuncsHeader = ""; outs() << " " << Function << '\n'; } ++NumStaleProfileFunctions; StaleSampleCount += SampleCount; } } BC.NumProfiledFuncs = ProfiledFunctions.size(); const size_t NumAllProfiledFunctions = ProfiledFunctions.size() + NumStaleProfileFunctions; outs() << "BOLT-INFO: " << NumAllProfiledFunctions << " out of " << NumRegularFunctions << " functions in the binary (" << format("%.1f", NumAllProfiledFunctions / (float)NumRegularFunctions * 100.0f) << "%) have non-empty execution profile\n"; if (NumNonSimpleProfiledFunctions) { outs() << "BOLT-INFO: " << NumNonSimpleProfiledFunctions << " function" << (NumNonSimpleProfiledFunctions == 1 ? "" : "s") << " with profile could not be optimized\n"; } if (NumStaleProfileFunctions) { const float PctStale = NumStaleProfileFunctions / (float)NumAllProfiledFunctions * 100.0f; auto printErrorOrWarning = [&]() { if (PctStale > opts::StaleThreshold) errs() << "BOLT-ERROR: "; else errs() << "BOLT-WARNING: "; }; printErrorOrWarning(); errs() << NumStaleProfileFunctions << format(" (%.1f%% of all profiled)", PctStale) << " function" << (NumStaleProfileFunctions == 1 ? "" : "s") << " have invalid (possibly stale) profile." " Use -report-stale to see the list.\n"; if (TotalSampleCount > 0) { printErrorOrWarning(); errs() << StaleSampleCount << " out of " << TotalSampleCount << " samples in the binary (" << format("%.1f", ((100.0f * StaleSampleCount) / TotalSampleCount)) << "%) belong to functions with invalid" " (possibly stale) profile.\n"; } if (PctStale > opts::StaleThreshold) { errs() << "BOLT-ERROR: stale functions exceed specified threshold of " << opts::StaleThreshold << "%. Exiting.\n"; exit(1); } } if (const uint64_t NumUnusedObjects = BC.getNumUnusedProfiledObjects()) { outs() << "BOLT-INFO: profile for " << NumUnusedObjects << " objects was ignored\n"; } if (ProfiledFunctions.size() > 10) { if (opts::Verbosity >= 1) { outs() << "BOLT-INFO: top called functions are:\n"; std::sort(ProfiledFunctions.begin(), ProfiledFunctions.end(), [](const BinaryFunction *A, const BinaryFunction *B) { return B->getExecutionCount() < A->getExecutionCount(); }); auto SFI = ProfiledFunctions.begin(); auto SFIend = ProfiledFunctions.end(); for (unsigned I = 0u; I < opts::TopCalledLimit && SFI != SFIend; ++SFI, ++I) outs() << " " << **SFI << " : " << (*SFI)->getExecutionCount() << '\n'; } } if (!opts::PrintSortedBy.empty() && std::find(opts::PrintSortedBy.begin(), opts::PrintSortedBy.end(), DynoStats::FIRST_DYNO_STAT) == opts::PrintSortedBy.end()) { std::vector<const BinaryFunction *> Functions; std::map<const BinaryFunction *, DynoStats> Stats; for (const auto &BFI : BC.getBinaryFunctions()) { const BinaryFunction &BF = BFI.second; if (shouldOptimize(BF) && BF.hasValidProfile()) { Functions.push_back(&BF); Stats.emplace(&BF, getDynoStats(BF)); } } const bool SortAll = std::find(opts::PrintSortedBy.begin(), opts::PrintSortedBy.end(), DynoStats::LAST_DYNO_STAT) != opts::PrintSortedBy.end(); const bool Ascending = opts::DynoStatsSortOrderOpt == opts::DynoStatsSortOrder::Ascending; if (SortAll) { std::stable_sort(Functions.begin(), Functions.end(), [Ascending, &Stats](const BinaryFunction *A, const BinaryFunction *B) { return Ascending ? Stats.at(A) < Stats.at(B) : Stats.at(B) < Stats.at(A); }); } else { std::stable_sort( Functions.begin(), Functions.end(), [Ascending, &Stats](const BinaryFunction *A, const BinaryFunction *B) { const DynoStats &StatsA = Stats.at(A); const DynoStats &StatsB = Stats.at(B); return Ascending ? StatsA.lessThan(StatsB, opts::PrintSortedBy) : StatsB.lessThan(StatsA, opts::PrintSortedBy); }); } outs() << "BOLT-INFO: top functions sorted by "; if (SortAll) { outs() << "dyno stats"; } else { outs() << "("; bool PrintComma = false; for (const DynoStats::Category Category : opts::PrintSortedBy) { if (PrintComma) outs() << ", "; outs() << DynoStats::Description(Category); PrintComma = true; } outs() << ")"; } outs() << " are:\n"; auto SFI = Functions.begin(); for (unsigned I = 0; I < 100 && SFI != Functions.end(); ++SFI, ++I) { const DynoStats Stats = getDynoStats(**SFI); outs() << " " << **SFI; if (!SortAll) { outs() << " ("; bool PrintComma = false; for (const DynoStats::Category Category : opts::PrintSortedBy) { if (PrintComma) outs() << ", "; outs() << dynoStatsOptName(Category) << "=" << Stats[Category]; PrintComma = true; } outs() << ")"; } outs() << "\n"; } } if (!BC.TrappedFunctions.empty()) { errs() << "BOLT-WARNING: " << BC.TrappedFunctions.size() << " function" << (BC.TrappedFunctions.size() > 1 ? "s" : "") << " will trap on entry. Use -trap-avx512=0 to disable" " traps."; if (opts::Verbosity >= 1 || BC.TrappedFunctions.size() <= 5) { errs() << '\n'; for (const BinaryFunction *Function : BC.TrappedFunctions) errs() << " " << *Function << '\n'; } else { errs() << " Use -v=1 to see the list.\n"; } } // Print information on missed macro-fusion opportunities seen on input. if (BC.MissedMacroFusionPairs) { outs() << "BOLT-INFO: the input contains " << BC.MissedMacroFusionPairs << " (dynamic count : " << BC.MissedMacroFusionExecCount << ") opportunities for macro-fusion optimization"; switch (opts::AlignMacroOpFusion) { case MFT_NONE: outs() << ". Use -align-macro-fusion to fix.\n"; break; case MFT_HOT: outs() << ". Will fix instances on a hot path.\n"; break; case MFT_ALL: outs() << " that are going to be fixed\n"; break; } } // Collect and print information about suboptimal code layout on input. if (opts::ReportBadLayout) { std::vector<const BinaryFunction *> SuboptimalFuncs; for (auto &BFI : BC.getBinaryFunctions()) { const BinaryFunction &BF = BFI.second; if (!BF.hasValidProfile()) continue; const uint64_t HotThreshold = std::max<uint64_t>(BF.getKnownExecutionCount(), 1); bool HotSeen = false; for (const BinaryBasicBlock *BB : BF.rlayout()) { if (!HotSeen && BB->getKnownExecutionCount() > HotThreshold) { HotSeen = true; continue; } if (HotSeen && BB->getKnownExecutionCount() == 0) { SuboptimalFuncs.push_back(&BF); break; } } } if (!SuboptimalFuncs.empty()) { std::sort(SuboptimalFuncs.begin(), SuboptimalFuncs.end(), [](const BinaryFunction *A, const BinaryFunction *B) { return A->getKnownExecutionCount() / A->getSize() > B->getKnownExecutionCount() / B->getSize(); }); outs() << "BOLT-INFO: " << SuboptimalFuncs.size() << " functions have " "cold code in the middle of hot code. Top functions are:\n"; for (unsigned I = 0; I < std::min(static_cast<size_t>(opts::ReportBadLayout), SuboptimalFuncs.size()); ++I) SuboptimalFuncs[I]->print(outs()); } } if (NumUnknownControlFlowFunctions) { outs() << "BOLT-INFO: " << NumUnknownControlFlowFunctions << " functions have instructions with unknown control flow"; if (!opts::PrintUnknown) outs() << ". Use -print-unknown to see the list."; outs() << '\n'; } } void InstructionLowering::runOnFunctions(BinaryContext &BC) { for (auto &BFI : BC.getBinaryFunctions()) for (BinaryBasicBlock &BB : BFI.second) for (MCInst &Instruction : BB) BC.MIB->lowerTailCall(Instruction); } void StripRepRet::runOnFunctions(BinaryContext &BC) { uint64_t NumPrefixesRemoved = 0; uint64_t NumBytesSaved = 0; for (auto &BFI : BC.getBinaryFunctions()) { for (BinaryBasicBlock &BB : BFI.second) { auto LastInstRIter = BB.getLastNonPseudo(); if (LastInstRIter == BB.rend() || !BC.MIB->isReturn(*LastInstRIter) || !BC.MIB->deleteREPPrefix(*LastInstRIter)) continue; NumPrefixesRemoved += BB.getKnownExecutionCount(); ++NumBytesSaved; } } if (NumBytesSaved) outs() << "BOLT-INFO: removed " << NumBytesSaved << " 'repz' prefixes" " with estimated execution count of " << NumPrefixesRemoved << " times.\n"; } void InlineMemcpy::runOnFunctions(BinaryContext &BC) { if (!BC.isX86()) return; uint64_t NumInlined = 0; uint64_t NumInlinedDyno = 0; for (auto &BFI : BC.getBinaryFunctions()) { for (BinaryBasicBlock &BB : BFI.second) { for (auto II = BB.begin(); II != BB.end(); ++II) { MCInst &Inst = *II; if (!BC.MIB->isCall(Inst) || MCPlus::getNumPrimeOperands(Inst) != 1 || !Inst.getOperand(0).isExpr()) continue; const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(Inst); if (CalleeSymbol->getName() != "memcpy" && CalleeSymbol->getName() != "memcpy@PLT" && CalleeSymbol->getName() != "_memcpy8") continue; const bool IsMemcpy8 = (CalleeSymbol->getName() == "_memcpy8"); const bool IsTailCall = BC.MIB->isTailCall(Inst); const InstructionListType NewCode = BC.MIB->createInlineMemcpy(IsMemcpy8); II = BB.replaceInstruction(II, NewCode); std::advance(II, NewCode.size() - 1); if (IsTailCall) { MCInst Return; BC.MIB->createReturn(Return); II = BB.insertInstruction(std::next(II), std::move(Return)); } ++NumInlined; NumInlinedDyno += BB.getKnownExecutionCount(); } } } if (NumInlined) { outs() << "BOLT-INFO: inlined " << NumInlined << " memcpy() calls"; if (NumInlinedDyno) outs() << ". The calls were executed " << NumInlinedDyno << " times based on profile."; outs() << '\n'; } } bool SpecializeMemcpy1::shouldOptimize(const BinaryFunction &Function) const { if (!BinaryFunctionPass::shouldOptimize(Function)) return false; for (const std::string &FunctionSpec : Spec) { StringRef FunctionName = StringRef(FunctionSpec).split(':').first; if (Function.hasNameRegex(FunctionName)) return true; } return false; } std::set<size_t> SpecializeMemcpy1::getCallSitesToOptimize( const BinaryFunction &Function) const { StringRef SitesString; for (const std::string &FunctionSpec : Spec) { StringRef FunctionName; std::tie(FunctionName, SitesString) = StringRef(FunctionSpec).split(':'); if (Function.hasNameRegex(FunctionName)) break; SitesString = ""; } std::set<size_t> Sites; SmallVector<StringRef, 4> SitesVec; SitesString.split(SitesVec, ':'); for (StringRef SiteString : SitesVec) { if (SiteString.empty()) continue; size_t Result; if (!SiteString.getAsInteger(10, Result)) Sites.emplace(Result); } return Sites; } void SpecializeMemcpy1::runOnFunctions(BinaryContext &BC) { if (!BC.isX86()) return; uint64_t NumSpecialized = 0; uint64_t NumSpecializedDyno = 0; for (auto &BFI : BC.getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!shouldOptimize(Function)) continue; std::set<size_t> CallsToOptimize = getCallSitesToOptimize(Function); auto shouldOptimize = [&](size_t N) { return CallsToOptimize.empty() || CallsToOptimize.count(N); }; std::vector<BinaryBasicBlock *> Blocks(Function.pbegin(), Function.pend()); size_t CallSiteID = 0; for (BinaryBasicBlock *CurBB : Blocks) { for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { MCInst &Inst = *II; if (!BC.MIB->isCall(Inst) || MCPlus::getNumPrimeOperands(Inst) != 1 || !Inst.getOperand(0).isExpr()) continue; const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(Inst); if (CalleeSymbol->getName() != "memcpy" && CalleeSymbol->getName() != "memcpy@PLT") continue; if (BC.MIB->isTailCall(Inst)) continue; ++CallSiteID; if (!shouldOptimize(CallSiteID)) continue; // Create a copy of a call to memcpy(dest, src, size). MCInst MemcpyInstr = Inst; BinaryBasicBlock *OneByteMemcpyBB = CurBB->splitAt(II); BinaryBasicBlock *NextBB = nullptr; if (OneByteMemcpyBB->getNumNonPseudos() > 1) { NextBB = OneByteMemcpyBB->splitAt(OneByteMemcpyBB->begin()); NextBB->eraseInstruction(NextBB->begin()); } else { NextBB = OneByteMemcpyBB->getSuccessor(); OneByteMemcpyBB->eraseInstruction(OneByteMemcpyBB->begin()); assert(NextBB && "unexpected call to memcpy() with no return"); } BinaryBasicBlock *MemcpyBB = Function.addBasicBlock(CurBB->getInputOffset()); InstructionListType CmpJCC = BC.MIB->createCmpJE(BC.MIB->getIntArgRegister(2), 1, OneByteMemcpyBB->getLabel(), BC.Ctx.get()); CurBB->addInstructions(CmpJCC); CurBB->addSuccessor(MemcpyBB); MemcpyBB->addInstruction(std::move(MemcpyInstr)); MemcpyBB->addSuccessor(NextBB); MemcpyBB->setCFIState(NextBB->getCFIState()); MemcpyBB->setExecutionCount(0); // To prevent the actual call from being moved to cold, we set its // execution count to 1. if (CurBB->getKnownExecutionCount() > 0) MemcpyBB->setExecutionCount(1); InstructionListType OneByteMemcpy = BC.MIB->createOneByteMemcpy(); OneByteMemcpyBB->addInstructions(OneByteMemcpy); ++NumSpecialized; NumSpecializedDyno += CurBB->getKnownExecutionCount(); CurBB = NextBB; // Note: we don't expect the next instruction to be a call to memcpy. II = CurBB->begin(); } } } if (NumSpecialized) { outs() << "BOLT-INFO: specialized " << NumSpecialized << " memcpy() call sites for size 1"; if (NumSpecializedDyno) outs() << ". The calls were executed " << NumSpecializedDyno << " times based on profile."; outs() << '\n'; } } void RemoveNops::runOnFunction(BinaryFunction &BF) { const BinaryContext &BC = BF.getBinaryContext(); for (BinaryBasicBlock &BB : BF) { for (int64_t I = BB.size() - 1; I >= 0; --I) { MCInst &Inst = BB.getInstructionAtIndex(I); if (BC.MIB->isNoop(Inst) && BC.MIB->hasAnnotation(Inst, "NOP")) BB.eraseInstructionAtIndex(I); } } } void RemoveNops::runOnFunctions(BinaryContext &BC) { ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) { runOnFunction(BF); }; ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) { return BF.shouldPreserveNops(); }; ParallelUtilities::runOnEachFunction( BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, SkipFunc, "RemoveNops"); } } // namespace bolt } // namespace llvm