bolt/lib/Passes/ExtTSPReorderAlgorithm.cpp (623 lines of code) (raw):

//===- bolt/Passes/ExtTSPReorderAlgorithm.cpp - Order basic blocks --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // ExtTSP - layout of basic blocks with i-cache optimization. // // The algorithm is a greedy heuristic that works with chains (ordered lists) // of basic blocks. Initially all chains are isolated basic blocks. On every // iteration, we pick a pair of chains whose merging yields the biggest increase // in the ExtTSP value, which models how i-cache "friendly" a specific chain is. // A pair of chains giving the maximum gain is merged into a new chain. The // procedure stops when there is only one chain left, or when merging does not // increase ExtTSP. In the latter case, the remaining chains are sorted by // density in decreasing order. // // An important aspect is the way two chains are merged. Unlike earlier // algorithms (e.g., OptimizeCacheReorderAlgorithm or Pettis-Hansen), two // chains, X and Y, are first split into three, X1, X2, and Y. Then we // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. // This improves the quality of the final result (the search space is larger) // while keeping the implementation sufficiently fast. // // Reference: // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, // IEEE Transactions on Computers, 2020 // https://arxiv.org/abs/1809.04676 // //===----------------------------------------------------------------------===// #include "bolt/Core/BinaryBasicBlock.h" #include "bolt/Core/BinaryFunction.h" #include "bolt/Passes/ReorderAlgorithm.h" #include "llvm/Support/CommandLine.h" using namespace llvm; using namespace bolt; namespace opts { extern cl::OptionCategory BoltOptCategory; extern cl::opt<bool> NoThreads; cl::opt<unsigned> ChainSplitThreshold("chain-split-threshold", cl::desc("The maximum size of a chain to apply splitting"), cl::init(128), cl::ReallyHidden, cl::ZeroOrMore, cl::cat(BoltOptCategory)); cl::opt<double> ForwardWeight("forward-weight", cl::desc("The weight of forward jumps for ExtTSP value"), cl::init(0.1), cl::ReallyHidden, cl::ZeroOrMore, cl::cat(BoltOptCategory)); cl::opt<double> BackwardWeight("backward-weight", cl::desc("The weight of backward jumps for ExtTSP value"), cl::init(0.1), cl::ReallyHidden, cl::ZeroOrMore, cl::cat(BoltOptCategory)); cl::opt<unsigned> ForwardDistance("forward-distance", cl::desc("The maximum distance (in bytes) of forward jumps for ExtTSP value"), cl::init(1024), cl::ReallyHidden, cl::ZeroOrMore, cl::cat(BoltOptCategory)); cl::opt<unsigned> BackwardDistance("backward-distance", cl::desc("The maximum distance (in bytes) of backward jumps for ExtTSP value"), cl::init(640), cl::ReallyHidden, cl::ZeroOrMore, cl::cat(BoltOptCategory)); } namespace llvm { namespace bolt { // Epsilon for comparison of doubles constexpr double EPS = 1e-8; class Block; class Chain; class Edge; // Calculate Ext-TSP value, which quantifies the expected number of i-cache // misses for a given ordering of basic blocks double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, uint64_t Count) { assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE); // Fallthrough if (SrcAddr + SrcSize == DstAddr) { // Assume that FallthroughWeight = 1.0 after normalization return static_cast<double>(Count); } // Forward if (SrcAddr + SrcSize < DstAddr) { const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); if (Dist <= opts::ForwardDistance) { double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance; return opts::ForwardWeight * Prob * Count; } return 0; } // Backward const uint64_t Dist = SrcAddr + SrcSize - DstAddr; if (Dist <= opts::BackwardDistance) { double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance; return opts::BackwardWeight * Prob * Count; } return 0; } using BlockPair = std::pair<Block *, Block *>; using JumpList = std::vector<std::pair<BlockPair, uint64_t>>; using BlockIter = std::vector<Block *>::const_iterator; enum MergeTypeTy { X_Y = 0, X1_Y_X2 = 1, Y_X2_X1 = 2, X2_X1_Y = 3, }; class MergeGainTy { public: explicit MergeGainTy() {} explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType) : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} double score() const { return Score; } size_t mergeOffset() const { return MergeOffset; } MergeTypeTy mergeType() const { return MergeType; } // returns 'true' iff Other is preferred over this bool operator<(const MergeGainTy &Other) const { return (Other.Score > EPS && Other.Score > Score + EPS); } private: double Score{-1.0}; size_t MergeOffset{0}; MergeTypeTy MergeType{MergeTypeTy::X_Y}; }; // A node in CFG corresponding to a BinaryBasicBlock. // The class wraps several mutable fields utilized in the ExtTSP algorithm class Block { public: Block(const Block &) = delete; Block(Block &&) = default; Block &operator=(const Block &) = delete; Block &operator=(Block &&) = default; // Corresponding basic block BinaryBasicBlock *BB{nullptr}; // Current chain of the basic block Chain *CurChain{nullptr}; // (Estimated) size of the block in the binary uint64_t Size{0}; // Execution count of the block in the binary uint64_t ExecutionCount{0}; // An original index of the node in CFG size_t Index{0}; // The index of the block in the current chain size_t CurIndex{0}; // An offset of the block in the current chain mutable uint64_t EstimatedAddr{0}; // Fallthrough successor of the node in CFG Block *FallthroughSucc{nullptr}; // Fallthrough predecessor of the node in CFG Block *FallthroughPred{nullptr}; // Outgoing jumps from the block std::vector<std::pair<Block *, uint64_t>> OutJumps; // Incoming jumps to the block std::vector<std::pair<Block *, uint64_t>> InJumps; // Total execution count of incoming jumps uint64_t InWeight{0}; // Total execution count of outgoing jumps uint64_t OutWeight{0}; public: explicit Block(BinaryBasicBlock *BB_, uint64_t Size_) : BB(BB_), Size(Size_), ExecutionCount(BB_->getKnownExecutionCount()), Index(BB->getLayoutIndex()) {} bool adjacent(const Block *Other) const { return hasOutJump(Other) || hasInJump(Other); } bool hasOutJump(const Block *Other) const { for (std::pair<Block *, uint64_t> Jump : OutJumps) { if (Jump.first == Other) return true; } return false; } bool hasInJump(const Block *Other) const { for (std::pair<Block *, uint64_t> Jump : InJumps) { if (Jump.first == Other) return true; } return false; } }; // A chain (ordered sequence) of CFG nodes (basic blocks) class Chain { public: Chain(const Chain &) = delete; Chain(Chain &&) = default; Chain &operator=(const Chain &) = delete; Chain &operator=(Chain &&) = default; explicit Chain(size_t Id, Block *Block) : Id(Id), IsEntry(Block->Index == 0), ExecutionCount(Block->ExecutionCount), Size(Block->Size), Score(0), Blocks(1, Block) {} size_t id() const { return Id; } uint64_t size() const { return Size; } double density() const { return static_cast<double>(ExecutionCount) / Size; } uint64_t executionCount() const { return ExecutionCount; } bool isEntryPoint() const { return IsEntry; } double score() const { return Score; } void setScore(double NewScore) { Score = NewScore; } const std::vector<Block *> &blocks() const { return Blocks; } const std::vector<std::pair<Chain *, Edge *>> &edges() const { return Edges; } Edge *getEdge(Chain *Other) const { for (std::pair<Chain *, Edge *> It : Edges) if (It.first == Other) return It.second; return nullptr; } void removeEdge(Chain *Other) { auto It = Edges.begin(); while (It != Edges.end()) { if (It->first == Other) { Edges.erase(It); return; } It++; } } void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); } void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) { Blocks = MergedBlocks; IsEntry |= Other->IsEntry; ExecutionCount += Other->ExecutionCount; Size += Other->Size; // Update block's chains for (size_t Idx = 0; Idx < Blocks.size(); Idx++) { Blocks[Idx]->CurChain = this; Blocks[Idx]->CurIndex = Idx; } } void mergeEdges(Chain *Other); void clear() { Blocks.clear(); Edges.clear(); } private: size_t Id; bool IsEntry; uint64_t ExecutionCount; uint64_t Size; // Cached ext-tsp score for the chain double Score; // Blocks of the chain std::vector<Block *> Blocks; // Adjacent chains and corresponding edges (lists of jumps) std::vector<std::pair<Chain *, Edge *>> Edges; }; // An edge in CFG reprsenting jumps between chains of BinaryBasicBlocks. // When blocks are merged into chains, the edges are combined too so that // there is always at most one edge between a pair of chains class Edge { public: Edge(const Edge &) = delete; Edge(Edge &&) = default; Edge &operator=(const Edge &) = delete; Edge &operator=(Edge &&) = default; explicit Edge(Block *SrcBlock, Block *DstBlock, uint64_t EC) : SrcChain(SrcBlock->CurChain), DstChain(DstBlock->CurChain), Jumps(1, std::make_pair(std::make_pair(SrcBlock, DstBlock), EC)) {} const JumpList &jumps() const { return Jumps; } void changeEndpoint(Chain *From, Chain *To) { if (From == SrcChain) SrcChain = To; if (From == DstChain) DstChain = To; } void appendJump(Block *SrcBlock, Block *DstBlock, uint64_t EC) { Jumps.emplace_back(std::make_pair(SrcBlock, DstBlock), EC); } void moveJumps(Edge *Other) { Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); Other->Jumps.clear(); } bool hasCachedMergeGain(Chain *Src, Chain *Dst) const { return Src == SrcChain ? CacheValidForward : CacheValidBackward; } MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const { return Src == SrcChain ? CachedGainForward : CachedGainBackward; } void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) { if (Src == SrcChain) { CachedGainForward = MergeGain; CacheValidForward = true; } else { CachedGainBackward = MergeGain; CacheValidBackward = true; } } void invalidateCache() { CacheValidForward = false; CacheValidBackward = false; } private: Chain *SrcChain{nullptr}; Chain *DstChain{nullptr}; // Original jumps in the binary with correspinding execution counts JumpList Jumps; // Cached ext-tsp value for merging the pair of chains // Since the gain of merging (Src, Dst) and (Dst, Src) might be different, // we store both values here MergeGainTy CachedGainForward; MergeGainTy CachedGainBackward; // Whether the cached value must be recomputed bool CacheValidForward{false}; bool CacheValidBackward{false}; }; void Chain::mergeEdges(Chain *Other) { assert(this != Other && "cannot merge a chain with itself"); // Update edges adjacent to chain Other for (auto EdgeIt : Other->Edges) { Chain *const DstChain = EdgeIt.first; Edge *const DstEdge = EdgeIt.second; Chain *const TargetChain = DstChain == Other ? this : DstChain; // Find the corresponding edge in the current chain Edge *curEdge = getEdge(TargetChain); if (curEdge == nullptr) { DstEdge->changeEndpoint(Other, this); this->addEdge(TargetChain, DstEdge); if (DstChain != this && DstChain != Other) DstChain->addEdge(this, DstEdge); } else { curEdge->moveJumps(DstEdge); } // Cleanup leftover edge if (DstChain != Other) DstChain->removeEdge(Other); } } // A wrapper around three chains of basic blocks; it is used to avoid extra // instantiation of the vectors. class MergedChain { public: MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(), BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(), BlockIter End3 = BlockIter()) : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), End3(End3) {} template <typename F> void forEach(const F &Func) const { for (auto It = Begin1; It != End1; It++) Func(*It); for (auto It = Begin2; It != End2; It++) Func(*It); for (auto It = Begin3; It != End3; It++) Func(*It); } std::vector<Block *> getBlocks() const { std::vector<Block *> Result; Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) + std::distance(Begin3, End3)); Result.insert(Result.end(), Begin1, End1); Result.insert(Result.end(), Begin2, End2); Result.insert(Result.end(), Begin3, End3); return Result; } const Block *getFirstBlock() const { return *Begin1; } private: BlockIter Begin1; BlockIter End1; BlockIter Begin2; BlockIter End2; BlockIter Begin3; BlockIter End3; }; /// Deterministically compare pairs of chains bool compareChainPairs(const Chain *A1, const Chain *B1, const Chain *A2, const Chain *B2) { const uint64_t Samples1 = A1->executionCount() + B1->executionCount(); const uint64_t Samples2 = A2->executionCount() + B2->executionCount(); if (Samples1 != Samples2) return Samples1 < Samples2; // Making the order deterministic if (A1 != A2) return A1->id() < A2->id(); return B1->id() < B2->id(); } class ExtTSP { public: ExtTSP(const BinaryFunction &BF) : BF(BF) { initialize(); } /// Run the algorithm and return an ordering of basic block void run(BinaryFunction::BasicBlockOrderType &Order) { // Pass 1: Merge blocks with their fallthrough successors mergeFallthroughs(); // Pass 2: Merge pairs of chains while improving the ExtTSP objective mergeChainPairs(); // Pass 3: Merge cold blocks to reduce code size mergeColdChains(); // Collect blocks from all chains concatChains(Order); } private: /// Initialize algorithm's data structures void initialize() { // Create a separate MCCodeEmitter to allow lock-free execution BinaryContext::IndependentCodeEmitter Emitter; if (!opts::NoThreads) Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter(); // Initialize CFG nodes AllBlocks.reserve(BF.layout_size()); size_t LayoutIndex = 0; for (BinaryBasicBlock *BB : BF.layout()) { BB->setLayoutIndex(LayoutIndex++); uint64_t Size = std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1); AllBlocks.emplace_back(BB, Size); } // Initialize edges for the blocks and compute their total in/out weights size_t NumEdges = 0; for (Block &Block : AllBlocks) { auto BI = Block.BB->branch_info_begin(); for (BinaryBasicBlock *SuccBB : Block.BB->successors()) { assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && "missing profile for a jump"); if (SuccBB != Block.BB && BI->Count > 0) { class Block &SuccBlock = AllBlocks[SuccBB->getLayoutIndex()]; uint64_t Count = BI->Count; SuccBlock.InWeight += Count; SuccBlock.InJumps.emplace_back(&Block, Count); Block.OutWeight += Count; Block.OutJumps.emplace_back(&SuccBlock, Count); NumEdges++; } ++BI; } } // Initialize execution count for every basic block, which is the // maximum over the sums of all in and out edge weights. // Also execution count of the entry point is set to at least 1 for (Block &Block : AllBlocks) { size_t Index = Block.Index; Block.ExecutionCount = std::max(Block.ExecutionCount, Block.InWeight); Block.ExecutionCount = std::max(Block.ExecutionCount, Block.OutWeight); if (Index == 0 && Block.ExecutionCount == 0) Block.ExecutionCount = 1; } // Initialize chains AllChains.reserve(BF.layout_size()); HotChains.reserve(BF.layout_size()); for (Block &Block : AllBlocks) { AllChains.emplace_back(Block.Index, &Block); Block.CurChain = &AllChains.back(); if (Block.ExecutionCount > 0) HotChains.push_back(&AllChains.back()); } // Initialize edges AllEdges.reserve(NumEdges); for (Block &Block : AllBlocks) { for (std::pair<class Block *, uint64_t> &Jump : Block.OutJumps) { class Block *const SuccBlock = Jump.first; Edge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain); // this edge is already present in the graph if (CurEdge != nullptr) { assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr); CurEdge->appendJump(&Block, SuccBlock, Jump.second); continue; } // this is a new edge AllEdges.emplace_back(&Block, SuccBlock, Jump.second); Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back()); SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back()); } } assert(AllEdges.size() <= NumEdges && "Incorrect number of created edges"); } /// For a pair of blocks, A and B, block B is the fallthrough successor of A, /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps /// to B are from A. Such blocks should be adjacent in an optimal ordering; /// the method finds and merges such pairs of blocks void mergeFallthroughs() { // Find fallthroughs based on edge weights for (Block &Block : AllBlocks) { if (Block.BB->succ_size() == 1 && Block.BB->getSuccessor()->pred_size() == 1 && Block.BB->getSuccessor()->getLayoutIndex() != 0) { size_t SuccIndex = Block.BB->getSuccessor()->getLayoutIndex(); Block.FallthroughSucc = &AllBlocks[SuccIndex]; AllBlocks[SuccIndex].FallthroughPred = &Block; continue; } if (Block.OutWeight == 0) continue; for (std::pair<class Block *, uint64_t> &Edge : Block.OutJumps) { class Block *const SuccBlock = Edge.first; // Successor cannot be the first BB, which is pinned if (Block.OutWeight == Edge.second && SuccBlock->InWeight == Edge.second && SuccBlock->Index != 0) { Block.FallthroughSucc = SuccBlock; SuccBlock->FallthroughPred = &Block; break; } } } // There might be 'cycles' in the fallthrough dependencies (since profile // data isn't 100% accurate). // Break the cycles by choosing the block with smallest index as the tail for (Block &Block : AllBlocks) { if (Block.FallthroughSucc == nullptr || Block.FallthroughPred == nullptr) continue; class Block *SuccBlock = Block.FallthroughSucc; while (SuccBlock != nullptr && SuccBlock != &Block) SuccBlock = SuccBlock->FallthroughSucc; if (SuccBlock == nullptr) continue; // break the cycle AllBlocks[Block.FallthroughPred->Index].FallthroughSucc = nullptr; Block.FallthroughPred = nullptr; } // Merge blocks with their fallthrough successors for (Block &Block : AllBlocks) { if (Block.FallthroughPred == nullptr && Block.FallthroughSucc != nullptr) { class Block *CurBlock = &Block; while (CurBlock->FallthroughSucc != nullptr) { class Block *const NextBlock = CurBlock->FallthroughSucc; mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y); CurBlock = NextBlock; } } } } /// Merge pairs of chains while improving the ExtTSP objective void mergeChainPairs() { while (HotChains.size() > 1) { Chain *BestChainPred = nullptr; Chain *BestChainSucc = nullptr; auto BestGain = MergeGainTy(); // Iterate over all pairs of chains for (Chain *ChainPred : HotChains) { // Get candidates for merging with the current chain for (auto EdgeIter : ChainPred->edges()) { Chain *ChainSucc = EdgeIter.first; Edge *ChainEdge = EdgeIter.second; // Ignore loop edges if (ChainPred == ChainSucc) continue; // Compute the gain of merging the two chains MergeGainTy CurGain = mergeGain(ChainPred, ChainSucc, ChainEdge); if (CurGain.score() <= EPS) continue; if (BestGain < CurGain || (std::abs(CurGain.score() - BestGain.score()) < EPS && compareChainPairs(ChainPred, ChainSucc, BestChainPred, BestChainSucc))) { BestGain = CurGain; BestChainPred = ChainPred; BestChainSucc = ChainSucc; } } } // Stop merging when there is no improvement if (BestGain.score() <= EPS) break; // Merge the best pair of chains mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(), BestGain.mergeType()); } } /// Merge cold blocks to reduce code size void mergeColdChains() { for (BinaryBasicBlock *SrcBB : BF.layout()) { // Iterating in reverse order to make sure original fallthrough jumps are // merged first for (auto Itr = SrcBB->succ_rbegin(); Itr != SrcBB->succ_rend(); ++Itr) { BinaryBasicBlock *DstBB = *Itr; size_t SrcIndex = SrcBB->getLayoutIndex(); size_t DstIndex = DstBB->getLayoutIndex(); Chain *SrcChain = AllBlocks[SrcIndex].CurChain; Chain *DstChain = AllBlocks[DstIndex].CurChain; if (SrcChain != DstChain && !DstChain->isEntryPoint() && SrcChain->blocks().back()->Index == SrcIndex && DstChain->blocks().front()->Index == DstIndex) mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y); } } } /// Compute ExtTSP score for a given order of basic blocks double score(const MergedChain &MergedBlocks, const JumpList &Jumps) const { if (Jumps.empty()) return 0.0; uint64_t CurAddr = 0; MergedBlocks.forEach( [&](const Block *BB) { BB->EstimatedAddr = CurAddr; CurAddr += BB->Size; } ); double Score = 0; for (const std::pair<std::pair<Block *, Block *>, uint64_t> &Jump : Jumps) { const Block *SrcBlock = Jump.first.first; const Block *DstBlock = Jump.first.second; Score += extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size, DstBlock->EstimatedAddr, Jump.second); } return Score; } /// Compute the gain of merging two chains /// /// The function considers all possible ways of merging two chains and /// computes the one having the largest increase in ExtTSP objective. The /// result is a pair with the first element being the gain and the second /// element being the corresponding merging type. MergeGainTy mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const { if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) return Edge->getCachedMergeGain(ChainPred, ChainSucc); // Precompute jumps between ChainPred and ChainSucc JumpList Jumps = Edge->jumps(); class Edge *EdgePP = ChainPred->getEdge(ChainPred); if (EdgePP != nullptr) Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end()); assert(Jumps.size() > 0 && "trying to merge chains w/o jumps"); MergeGainTy Gain = MergeGainTy(); // Try to concatenate two chains w/o splitting Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y); // Try to break ChainPred in various ways and concatenate with ChainSucc if (ChainPred->blocks().size() <= opts::ChainSplitThreshold) { for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) { Block *BB1 = ChainPred->blocks()[Offset - 1]; Block *BB2 = ChainPred->blocks()[Offset]; // Does the splitting break FT successors? if (BB1->FallthroughSucc != nullptr) { (void)BB2; assert(BB1->FallthroughSucc == BB2 && "Fallthrough not preserved"); continue; } Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, MergeTypeTy::X1_Y_X2); Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, MergeTypeTy::Y_X2_X1); Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, MergeTypeTy::X2_X1_Y); } } Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); return Gain; } /// Merge two chains and update the best Gain MergeGainTy computeMergeGain(const MergeGainTy &CurGain, const Chain *ChainPred, const Chain *ChainSucc, const JumpList &Jumps, size_t MergeOffset, MergeTypeTy MergeType) const { MergedChain MergedBlocks = mergeBlocks( ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType); // Do not allow a merge that does not preserve the original entry block if ((ChainPred->isEntryPoint() || ChainSucc->isEntryPoint()) && MergedBlocks.getFirstBlock()->Index != 0) return CurGain; // The gain for the new chain const double NewScore = score(MergedBlocks, Jumps) - ChainPred->score(); auto NewGain = MergeGainTy(NewScore, MergeOffset, MergeType); return CurGain < NewGain ? NewGain : CurGain; } /// Merge two chains of blocks respecting a given merge 'type' and 'offset' /// /// If MergeType == 0, then the result is a concatentation of two chains. /// Otherwise, the first chain is cut into two sub-chains at the offset, /// and merged using all possible ways of concatenating three chains. MergedChain mergeBlocks(const std::vector<Block *> &X, const std::vector<Block *> &Y, size_t MergeOffset, MergeTypeTy MergeType) const { // Split the first chain, X, into X1 and X2 BlockIter BeginX1 = X.begin(); BlockIter EndX1 = X.begin() + MergeOffset; BlockIter BeginX2 = X.begin() + MergeOffset; BlockIter EndX2 = X.end(); BlockIter BeginY = Y.begin(); BlockIter EndY = Y.end(); // Construct a new chain from the three existing ones switch (MergeType) { case MergeTypeTy::X_Y: return MergedChain(BeginX1, EndX2, BeginY, EndY); case MergeTypeTy::X1_Y_X2: return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); case MergeTypeTy::Y_X2_X1: return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); case MergeTypeTy::X2_X1_Y: return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); } llvm_unreachable("unexpected merge type"); } /// Merge chain From into chain Into, update the list of active chains, /// adjacency information, and the corresponding cached values void mergeChains(Chain *Into, Chain *From, size_t MergeOffset, MergeTypeTy MergeType) { assert(Into != From && "a chain cannot be merged with itself"); // Merge the blocks MergedChain MergedBlocks = mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType); Into->merge(From, MergedBlocks.getBlocks()); Into->mergeEdges(From); From->clear(); // Update cached ext-tsp score for the new chain Edge *SelfEdge = Into->getEdge(Into); if (SelfEdge != nullptr) { MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end()); Into->setScore(score(MergedBlocks, SelfEdge->jumps())); } // Remove chain From from the list of active chains auto Iter = std::remove(HotChains.begin(), HotChains.end(), From); HotChains.erase(Iter, HotChains.end()); // Invalidate caches for (std::pair<Chain *, Edge *> EdgeIter : Into->edges()) EdgeIter.second->invalidateCache(); } /// Concatenate all chains into a final order void concatChains(BinaryFunction::BasicBlockOrderType &Order) { // Collect chains std::vector<Chain *> SortedChains; for (Chain &Chain : AllChains) if (Chain.blocks().size() > 0) SortedChains.push_back(&Chain); // Sorting chains by density in decreasing order std::stable_sort( SortedChains.begin(), SortedChains.end(), [](const Chain *C1, const Chain *C2) { // Original entry point to the front if (C1->isEntryPoint() != C2->isEntryPoint()) { if (C1->isEntryPoint()) return true; if (C2->isEntryPoint()) return false; } const double D1 = C1->density(); const double D2 = C2->density(); if (D1 != D2) return D1 > D2; // Making the order deterministic return C1->id() < C2->id(); } ); // Collect the basic blocks in the order specified by their chains Order.reserve(BF.layout_size()); for (Chain *Chain : SortedChains) for (Block *Block : Chain->blocks()) Order.push_back(Block->BB); } private: // The binary function const BinaryFunction &BF; // All CFG nodes (basic blocks) std::vector<Block> AllBlocks; // All chains of blocks std::vector<Chain> AllChains; // Active chains. The vector gets updated at runtime when chains are merged std::vector<Chain *> HotChains; // All edges between chains std::vector<Edge> AllEdges; }; void ExtTSPReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF, BasicBlockOrder &Order) const { if (BF.layout_empty()) return; // Do not change layout of functions w/o profile information if (!BF.hasValidProfile() || BF.layout_size() <= 2) { for (BinaryBasicBlock *BB : BF.layout()) Order.push_back(BB); return; } // Apply the algorithm ExtTSP(BF).run(Order); // Verify correctness assert(Order[0]->isEntryPoint() && "Original entry point is not preserved"); assert(Order.size() == BF.layout_size() && "Wrong size of reordered layout"); } } // namespace bolt } // namespace llvm