bolt/lib/Passes/TailDuplication.cpp (357 lines of code) (raw):

//===- bolt/Passes/TailDuplication.cpp ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the TailDuplication class. // //===----------------------------------------------------------------------===// #include "bolt/Passes/TailDuplication.h" #include <numeric> #define DEBUG_TYPE "taildup" using namespace llvm; namespace opts { extern cl::OptionCategory BoltOptCategory; static cl::opt<bool> TailDuplicationAggressive( "tail-duplication-aggressive", cl::desc("tail duplication should act aggressively in duplicating multiple " "blocks per tail"), cl::ZeroOrMore, cl::ReallyHidden, cl::init(false), cl::cat(BoltOptCategory)); static cl::opt<unsigned> TailDuplicationMinimumOffset("tail-duplication-minimum-offset", cl::desc("minimum offset needed between block " "and successor to allow duplication"), cl::ZeroOrMore, cl::ReallyHidden, cl::init(64), cl::cat(BoltOptCategory)); static cl::opt<unsigned> TailDuplicationMaximumDuplication( "tail-duplication-maximum-duplication", cl::desc("maximum size of duplicated blocks (in bytes)"), cl::ZeroOrMore, cl::ReallyHidden, cl::init(64), cl::cat(BoltOptCategory)); static cl::opt<bool> TailDuplicationConstCopyPropagation( "tail-duplication-const-copy-propagation", cl::desc("enable const and copy propagation after tail duplication"), cl::ReallyHidden, cl::init(false), cl::cat(BoltOptCategory)); } // namespace opts namespace llvm { namespace bolt { void TailDuplication::getCallerSavedRegs(const MCInst &Inst, BitVector &Regs, BinaryContext &BC) const { if (!BC.MIB->isCall(Inst)) return; BitVector CallRegs = BitVector(BC.MRI->getNumRegs(), false); BC.MIB->getCalleeSavedRegs(CallRegs); CallRegs.flip(); Regs |= CallRegs; } bool TailDuplication::regIsPossiblyOverwritten(const MCInst &Inst, unsigned Reg, BinaryContext &BC) const { BitVector WrittenRegs = BitVector(BC.MRI->getNumRegs(), false); BC.MIB->getWrittenRegs(Inst, WrittenRegs); getCallerSavedRegs(Inst, WrittenRegs, BC); if (BC.MIB->isRep(Inst)) BC.MIB->getRepRegs(WrittenRegs); WrittenRegs &= BC.MIB->getAliases(Reg, false); return WrittenRegs.any(); } bool TailDuplication::regIsDefinitelyOverwritten(const MCInst &Inst, unsigned Reg, BinaryContext &BC) const { BitVector WrittenRegs = BitVector(BC.MRI->getNumRegs(), false); BC.MIB->getWrittenRegs(Inst, WrittenRegs); getCallerSavedRegs(Inst, WrittenRegs, BC); if (BC.MIB->isRep(Inst)) BC.MIB->getRepRegs(WrittenRegs); return (!regIsUsed(Inst, Reg, BC) && WrittenRegs.test(Reg) && !BC.MIB->isConditionalMove(Inst)); } bool TailDuplication::regIsUsed(const MCInst &Inst, unsigned Reg, BinaryContext &BC) const { BitVector SrcRegs = BitVector(BC.MRI->getNumRegs(), false); BC.MIB->getSrcRegs(Inst, SrcRegs); SrcRegs &= BC.MIB->getAliases(Reg, true); return SrcRegs.any(); } bool TailDuplication::isOverwrittenBeforeUsed(BinaryBasicBlock &StartBB, unsigned Reg) const { BinaryFunction *BF = StartBB.getFunction(); BinaryContext &BC = BF->getBinaryContext(); std::queue<BinaryBasicBlock *> Q; for (auto Itr = StartBB.succ_begin(); Itr != StartBB.succ_end(); ++Itr) { BinaryBasicBlock *NextBB = *Itr; Q.push(NextBB); } std::set<BinaryBasicBlock *> Visited; // Breadth first search through successive blocks and see if Reg is ever used // before its overwritten while (Q.size() > 0) { BinaryBasicBlock *CurrBB = Q.front(); Q.pop(); if (Visited.count(CurrBB)) continue; Visited.insert(CurrBB); bool Overwritten = false; for (auto Itr = CurrBB->begin(); Itr != CurrBB->end(); ++Itr) { MCInst &Inst = *Itr; if (regIsUsed(Inst, Reg, BC)) return false; if (regIsDefinitelyOverwritten(Inst, Reg, BC)) { Overwritten = true; break; } } if (Overwritten) continue; for (auto Itr = CurrBB->succ_begin(); Itr != CurrBB->succ_end(); ++Itr) { BinaryBasicBlock *NextBB = *Itr; Q.push(NextBB); } } return true; } void TailDuplication::constantAndCopyPropagate( BinaryBasicBlock &OriginalBB, std::vector<BinaryBasicBlock *> &BlocksToPropagate) { BinaryFunction *BF = OriginalBB.getFunction(); BinaryContext &BC = BF->getBinaryContext(); BlocksToPropagate.insert(BlocksToPropagate.begin(), &OriginalBB); // Iterate through the original instructions to find one to propagate for (auto Itr = OriginalBB.begin(); Itr != OriginalBB.end(); ++Itr) { MCInst &OriginalInst = *Itr; // It must be a non conditional if (BC.MIB->isConditionalMove(OriginalInst)) continue; // Move immediate or move register if ((!BC.MII->get(OriginalInst.getOpcode()).isMoveImmediate() || !OriginalInst.getOperand(1).isImm()) && (!BC.MII->get(OriginalInst.getOpcode()).isMoveReg() || !OriginalInst.getOperand(1).isReg())) continue; // True if this is constant propagation and not copy propagation bool ConstantProp = BC.MII->get(OriginalInst.getOpcode()).isMoveImmediate(); // The Register to replaced unsigned Reg = OriginalInst.getOperand(0).getReg(); // True if the register to replace was replaced everywhere it was used bool ReplacedEverywhere = true; // True if the register was definitely overwritten bool Overwritten = false; // True if the register to replace and the register to replace with (for // copy propagation) has not been overwritten and is still usable bool RegsActive = true; // Iterate through successor blocks and through their instructions for (BinaryBasicBlock *NextBB : BlocksToPropagate) { for (auto PropagateItr = ((NextBB == &OriginalBB) ? Itr + 1 : NextBB->begin()); PropagateItr < NextBB->end(); ++PropagateItr) { MCInst &PropagateInst = *PropagateItr; if (regIsUsed(PropagateInst, Reg, BC)) { bool Replaced = false; // If both registers are active for copy propagation or the register // to replace is active for constant propagation if (RegsActive) { // Set Replaced and so ReplacedEverwhere to false if it cannot be // replaced (no replacing that opcode, Register is src and dest) if (ConstantProp) Replaced = BC.MIB->replaceRegWithImm( PropagateInst, Reg, OriginalInst.getOperand(1).getImm()); else Replaced = BC.MIB->replaceRegWithReg( PropagateInst, Reg, OriginalInst.getOperand(1).getReg()); } ReplacedEverywhere = ReplacedEverywhere && Replaced; } // For copy propagation, make sure no propagation happens after the // register to replace with is overwritten if (!ConstantProp && regIsPossiblyOverwritten(PropagateInst, OriginalInst.getOperand(1).getReg(), BC)) RegsActive = false; // Make sure no propagation happens after the register to replace is // overwritten if (regIsPossiblyOverwritten(PropagateInst, Reg, BC)) RegsActive = false; // Record if the register to replace is overwritten if (regIsDefinitelyOverwritten(PropagateInst, Reg, BC)) { Overwritten = true; break; } } if (Overwritten) break; } // If the register was replaced everwhere and it was overwritten in either // one of the iterated through blocks or one of the successor blocks, delete // the original move instruction if (ReplacedEverywhere && (Overwritten || isOverwrittenBeforeUsed( *BlocksToPropagate[BlocksToPropagate.size() - 1], Reg))) { // If both registers are active for copy propagation or the register // to replace is active for constant propagation StaticInstructionDeletionCount++; DynamicInstructionDeletionCount += OriginalBB.getExecutionCount(); Itr = std::prev(OriginalBB.eraseInstruction(Itr)); } } } bool TailDuplication::isInCacheLine(const BinaryBasicBlock &BB, const BinaryBasicBlock &Succ) const { if (&BB == &Succ) return true; BinaryFunction::BasicBlockOrderType BlockLayout = BB.getFunction()->getLayout(); uint64_t Distance = 0; int Direction = (Succ.getLayoutIndex() > BB.getLayoutIndex()) ? 1 : -1; for (unsigned I = BB.getLayoutIndex() + Direction; I != Succ.getLayoutIndex(); I += Direction) { Distance += BlockLayout[I]->getOriginalSize(); if (Distance > opts::TailDuplicationMinimumOffset) return false; } return true; } std::vector<BinaryBasicBlock *> TailDuplication::moderateCodeToDuplicate(BinaryBasicBlock &BB) const { std::vector<BinaryBasicBlock *> BlocksToDuplicate; if (BB.hasJumpTable()) return BlocksToDuplicate; if (BB.getOriginalSize() > opts::TailDuplicationMaximumDuplication) return BlocksToDuplicate; for (auto Itr = BB.succ_begin(); Itr != BB.succ_end(); ++Itr) { if ((*Itr)->getLayoutIndex() == BB.getLayoutIndex() + 1) // If duplicating would introduce a new branch, don't duplicate return BlocksToDuplicate; } BlocksToDuplicate.push_back(&BB); return BlocksToDuplicate; } std::vector<BinaryBasicBlock *> TailDuplication::aggressiveCodeToDuplicate(BinaryBasicBlock &BB) const { std::vector<BinaryBasicBlock *> BlocksToDuplicate; BinaryBasicBlock *CurrBB = &BB; while (CurrBB) { LLVM_DEBUG(dbgs() << "Aggressive tail duplication: adding " << CurrBB->getName() << " to duplication list\n";); BlocksToDuplicate.push_back(CurrBB); if (CurrBB->hasJumpTable()) { LLVM_DEBUG(dbgs() << "Aggressive tail duplication: clearing duplication " "list due to a JT in " << CurrBB->getName() << '\n';); BlocksToDuplicate.clear(); break; } // With no successors, we've reached the end and should duplicate all of // BlocksToDuplicate if (CurrBB->succ_size() == 0) break; // With two successors, if they're both a jump, we should duplicate all // blocks in BlocksToDuplicate. Otherwise, we cannot find a simple stream of // blocks to copy if (CurrBB->succ_size() >= 2) { if (CurrBB->getConditionalSuccessor(false)->getLayoutIndex() == CurrBB->getLayoutIndex() + 1 || CurrBB->getConditionalSuccessor(true)->getLayoutIndex() == CurrBB->getLayoutIndex() + 1) { LLVM_DEBUG(dbgs() << "Aggressive tail duplication: clearing " "duplication list, can't find a simple stream at " << CurrBB->getName() << '\n';); BlocksToDuplicate.clear(); } break; } // With one successor, if its a jump, we should duplicate all blocks in // BlocksToDuplicate. Otherwise, we should keep going BinaryBasicBlock *Succ = CurrBB->getSuccessor(); if (Succ->getLayoutIndex() != CurrBB->getLayoutIndex() + 1) break; CurrBB = Succ; } // Don't duplicate if its too much code unsigned DuplicationByteCount = std::accumulate( std::begin(BlocksToDuplicate), std::end(BlocksToDuplicate), 0, [](int value, BinaryBasicBlock *p) { return value + p->getOriginalSize(); }); if (DuplicationByteCount > opts::TailDuplicationMaximumDuplication) { LLVM_DEBUG(dbgs() << "Aggressive tail duplication: duplication byte count (" << DuplicationByteCount << ") exceeds maximum " << opts::TailDuplicationMaximumDuplication << '\n';); BlocksToDuplicate.clear(); } LLVM_DEBUG(dbgs() << "Aggressive tail duplication: found " << BlocksToDuplicate.size() << " blocks to duplicate\n";); return BlocksToDuplicate; } std::vector<BinaryBasicBlock *> TailDuplication::tailDuplicate( BinaryBasicBlock &BB, const std::vector<BinaryBasicBlock *> &BlocksToDuplicate) const { BinaryFunction *BF = BB.getFunction(); BinaryContext &BC = BF->getBinaryContext(); // Ratio of this new branches execution count to the total size of the // successor's execution count. Used to set this new branches execution count // and lower the old successor's execution count double ExecutionCountRatio = BB.getExecutionCount() > BB.getSuccessor()->getExecutionCount() ? 1.0 : (double)BB.getExecutionCount() / BB.getSuccessor()->getExecutionCount(); // Use the last branch info when adding a successor to LastBB BinaryBasicBlock::BinaryBranchInfo &LastBI = BB.getBranchInfo(*(BB.getSuccessor())); BinaryBasicBlock *LastOriginalBB = &BB; BinaryBasicBlock *LastDuplicatedBB = &BB; assert(LastDuplicatedBB->succ_size() == 1 && "tail duplication cannot act on a block with more than 1 successor"); LastDuplicatedBB->removeSuccessor(LastDuplicatedBB->getSuccessor()); std::vector<std::unique_ptr<BinaryBasicBlock>> DuplicatedBlocks; std::vector<BinaryBasicBlock *> DuplicatedBlocksToReturn; for (BinaryBasicBlock *CurrBB : BlocksToDuplicate) { DuplicatedBlocks.emplace_back( BF->createBasicBlock(0, (BC.Ctx)->createNamedTempSymbol("tail-dup"))); BinaryBasicBlock *NewBB = DuplicatedBlocks.back().get(); NewBB->addInstructions(CurrBB->begin(), CurrBB->end()); // Set execution count as if it was just a copy of the original NewBB->setExecutionCount( std::max((uint64_t)1, CurrBB->getExecutionCount())); LastDuplicatedBB->addSuccessor(NewBB, LastBI); DuplicatedBlocksToReturn.push_back(NewBB); // As long as its not the first block, adjust both original and duplicated // to what they should be if (LastDuplicatedBB != &BB) { LastOriginalBB->adjustExecutionCount(1.0 - ExecutionCountRatio); LastDuplicatedBB->adjustExecutionCount(ExecutionCountRatio); } if (CurrBB->succ_size() == 1) LastBI = CurrBB->getBranchInfo(*(CurrBB->getSuccessor())); LastOriginalBB = CurrBB; LastDuplicatedBB = NewBB; } LastDuplicatedBB->addSuccessors( LastOriginalBB->succ_begin(), LastOriginalBB->succ_end(), LastOriginalBB->branch_info_begin(), LastOriginalBB->branch_info_end()); LastOriginalBB->adjustExecutionCount(1.0 - ExecutionCountRatio); LastDuplicatedBB->adjustExecutionCount(ExecutionCountRatio); BF->insertBasicBlocks(&BB, std::move(DuplicatedBlocks)); return DuplicatedBlocksToReturn; } void TailDuplication::runOnFunction(BinaryFunction &Function) { // New blocks will be added and layout will change, // so make a copy here to iterate over the original layout BinaryFunction::BasicBlockOrderType BlockLayout = Function.getLayout(); for (BinaryBasicBlock *BB : BlockLayout) { if (BB->succ_size() == 1 && BB->getSuccessor()->getLayoutIndex() != BB->getLayoutIndex() + 1) UnconditionalBranchDynamicCount += BB->getExecutionCount(); if (BB->succ_size() == 2 && BB->getFallthrough()->getLayoutIndex() != BB->getLayoutIndex() + 1) UnconditionalBranchDynamicCount += BB->getFallthroughBranchInfo().Count; AllBlocksDynamicCount += BB->getExecutionCount(); // The block must be hot if (BB->getExecutionCount() == 0) continue; // with one successor if (BB->succ_size() != 1) continue; // no jump table if (BB->hasJumpTable()) continue; // Skip not-in-layout, i.e. unreachable, blocks. if (BB->getLayoutIndex() >= BlockLayout.size()) continue; // and we are estimating that this sucessor is not already in the same cache // line BinaryBasicBlock *Succ = BB->getSuccessor(); if (isInCacheLine(*BB, *Succ)) continue; std::vector<BinaryBasicBlock *> BlocksToDuplicate; if (opts::TailDuplicationAggressive) BlocksToDuplicate = aggressiveCodeToDuplicate(*Succ); else BlocksToDuplicate = moderateCodeToDuplicate(*Succ); if (BlocksToDuplicate.size() == 0) continue; PossibleDuplications++; PossibleDuplicationsDynamicCount += BB->getExecutionCount(); std::vector<BinaryBasicBlock *> DuplicatedBlocks = tailDuplicate(*BB, BlocksToDuplicate); if (!opts::TailDuplicationConstCopyPropagation) continue; constantAndCopyPropagate(*BB, DuplicatedBlocks); BinaryBasicBlock *FirstBB = BlocksToDuplicate[0]; if (FirstBB->pred_size() == 1) { BinaryBasicBlock *PredBB = *FirstBB->pred_begin(); if (PredBB->succ_size() == 1) constantAndCopyPropagate(*PredBB, BlocksToDuplicate); } } } void TailDuplication::runOnFunctions(BinaryContext &BC) { for (auto &It : BC.getBinaryFunctions()) { BinaryFunction &Function = It.second; if (!shouldOptimize(Function)) continue; runOnFunction(Function); } outs() << "BOLT-INFO: tail duplication possible duplications: " << PossibleDuplications << "\n"; outs() << "BOLT-INFO: tail duplication possible dynamic reductions: " << PossibleDuplicationsDynamicCount << "\n"; outs() << "BOLT-INFO: tail duplication possible dynamic reductions to " "unconditional branch execution : " << format("%.1f", ((float)PossibleDuplicationsDynamicCount * 100.0f) / UnconditionalBranchDynamicCount) << "%\n"; outs() << "BOLT-INFO: tail duplication possible dynamic reductions to all " "blocks execution : " << format("%.1f", ((float)PossibleDuplicationsDynamicCount * 100.0f) / AllBlocksDynamicCount) << "%\n"; outs() << "BOLT-INFO: tail duplication static propagation deletions: " << StaticInstructionDeletionCount << "\n"; outs() << "BOLT-INFO: tail duplication dynamic propagation deletions: " << DynamicInstructionDeletionCount << "\n"; // } } // end namespace bolt } // end namespace llvm