mlir/lib/Analysis/Presburger/LinearTransform.cpp (94 lines of code) (raw):

//===- LinearTransform.cpp - MLIR LinearTransform Class -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/LinearTransform.h" #include "mlir/Analysis/Presburger/IntegerPolyhedron.h" namespace mlir { LinearTransform::LinearTransform(Matrix &&oMatrix) : matrix(oMatrix) {} LinearTransform::LinearTransform(const Matrix &oMatrix) : matrix(oMatrix) {} // Set M(row, targetCol) to its remainder on division by M(row, sourceCol) // by subtracting from column targetCol an appropriate integer multiple of // sourceCol. This brings M(row, targetCol) to the range [0, M(row, sourceCol)). // Apply the same column operation to otherMatrix, with the same integer // multiple. static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol, unsigned targetCol, Matrix &otherMatrix) { assert(m(row, sourceCol) != 0 && "Cannot divide by zero!"); assert((m(row, sourceCol) > 0 && m(row, targetCol) > 0) && "Operands must be positive!"); int64_t ratio = m(row, targetCol) / m(row, sourceCol); m.addToColumn(sourceCol, targetCol, -ratio); otherMatrix.addToColumn(sourceCol, targetCol, -ratio); } std::pair<unsigned, LinearTransform> LinearTransform::makeTransformToColumnEchelon(Matrix m) { // We start with an identity result matrix and perform operations on m // until m is in column echelon form. We apply the same sequence of operations // on resultMatrix to obtain a transform that takes m to column echelon // form. Matrix resultMatrix = Matrix::identity(m.getNumColumns()); unsigned echelonCol = 0; // Invariant: in all rows above row, all columns from echelonCol onwards // are all zero elements. In an iteration, if the curent row has any non-zero // elements echelonCol onwards, we bring one to echelonCol and use it to // make all elements echelonCol + 1 onwards zero. for (unsigned row = 0; row < m.getNumRows(); ++row) { // Search row for a non-empty entry, starting at echelonCol. unsigned nonZeroCol = echelonCol; for (unsigned e = m.getNumColumns(); nonZeroCol < e; ++nonZeroCol) { if (m(row, nonZeroCol) == 0) continue; break; } // Continue to the next row with the same echelonCol if this row is all // zeros from echelonCol onwards. if (nonZeroCol == m.getNumColumns()) continue; // Bring the non-zero column to echelonCol. This doesn't affect rows // above since they are all zero at these columns. if (nonZeroCol != echelonCol) { m.swapColumns(nonZeroCol, echelonCol); resultMatrix.swapColumns(nonZeroCol, echelonCol); } // Make m(row, echelonCol) non-negative. if (m(row, echelonCol) < 0) { m.negateColumn(echelonCol); resultMatrix.negateColumn(echelonCol); } // Make all the entries in row after echelonCol zero. for (unsigned i = echelonCol + 1, e = m.getNumColumns(); i < e; ++i) { // We make m(row, i) non-negative, and then apply the Euclidean GCD // algorithm to (row, i) and (row, echelonCol). At the end, one of them // has value equal to the gcd of the two entries, and the other is zero. if (m(row, i) < 0) { m.negateColumn(i); resultMatrix.negateColumn(i); } unsigned targetCol = i, sourceCol = echelonCol; // At every step, we set m(row, targetCol) %= m(row, sourceCol), and // swap the indices sourceCol and targetCol. (not the columns themselves) // This modulo is implemented as a subtraction // m(row, targetCol) -= quotient * m(row, sourceCol), // where quotient = floor(m(row, targetCol) / m(row, sourceCol)), // which brings m(row, targetCol) to the range [0, m(row, sourceCol)). // // We are only allowed column operations; we perform the above // for every row, i.e., the above subtraction is done as a column // operation. This does not affect any rows above us since they are // guaranteed to be zero at these columns. while (m(row, targetCol) != 0 && m(row, sourceCol) != 0) { modEntryColumnOperation(m, row, sourceCol, targetCol, resultMatrix); std::swap(targetCol, sourceCol); } // One of (row, echelonCol) and (row, i) is zero and the other is the gcd. // Make it so that (row, echelonCol) holds the non-zero value. if (m(row, echelonCol) == 0) { m.swapColumns(i, echelonCol); resultMatrix.swapColumns(i, echelonCol); } } ++echelonCol; } return {echelonCol, LinearTransform(std::move(resultMatrix))}; } SmallVector<int64_t, 8> LinearTransform::postMultiplyRow(ArrayRef<int64_t> rowVec) const { assert(rowVec.size() == matrix.getNumRows() && "row vector dimension should match transform output dimension"); SmallVector<int64_t, 8> result(matrix.getNumColumns(), 0); for (unsigned col = 0, e = matrix.getNumColumns(); col < e; ++col) for (unsigned i = 0, e = matrix.getNumRows(); i < e; ++i) result[col] += rowVec[i] * matrix(i, col); return result; } SmallVector<int64_t, 8> LinearTransform::preMultiplyColumn(ArrayRef<int64_t> colVec) const { assert(matrix.getNumColumns() == colVec.size() && "column vector dimension should match transform input dimension"); SmallVector<int64_t, 8> result(matrix.getNumRows(), 0); for (unsigned row = 0, e = matrix.getNumRows(); row < e; row++) for (unsigned i = 0, e = matrix.getNumColumns(); i < e; i++) result[row] += matrix(row, i) * colVec[i]; return result; } IntegerPolyhedron LinearTransform::applyTo(const IntegerPolyhedron &poly) const { IntegerPolyhedron result(poly.getNumIds()); for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i) { ArrayRef<int64_t> eq = poly.getEquality(i); int64_t c = eq.back(); SmallVector<int64_t, 8> newEq = postMultiplyRow(eq.drop_back()); newEq.push_back(c); result.addEquality(newEq); } for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i) { ArrayRef<int64_t> ineq = poly.getInequality(i); int64_t c = ineq.back(); SmallVector<int64_t, 8> newIneq = postMultiplyRow(ineq.drop_back()); newIneq.push_back(c); result.addInequality(newIneq); } return result; } } // namespace mlir