mlir/lib/Analysis/Presburger/Utils.cpp (74 lines of code) (raw):
//===- Utils.cpp - General utilities for Presburger library ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utility functions required by the Presburger Library.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Utils.h"
#include "mlir/Analysis/Presburger/IntegerPolyhedron.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
using namespace mlir;
/// Normalize a division's `dividend` and the `divisor` by their GCD. For
/// example: if the dividend and divisor are [2,0,4] and 4 respectively,
/// they get normalized to [1,0,2] and 2.
static void normalizeDivisionByGCD(SmallVectorImpl<int64_t> ÷nd,
unsigned &divisor) {
if (divisor == 0 || dividend.empty())
return;
int64_t gcd = llvm::greatestCommonDivisor(dividend.front(), int64_t(divisor));
// The reason for ignoring the constant term is as follows.
// For a division:
// floor((a + m.f(x))/(m.d))
// It can be replaced by:
// floor((floor(a/m) + f(x))/d)
// Since `{a/m}/d` in the dividend satisfies 0 <= {a/m}/d < 1/d, it will not
// influence the result of the floor division and thus, can be ignored.
for (size_t i = 1, m = dividend.size() - 1; i < m; i++) {
gcd = llvm::greatestCommonDivisor(dividend[i], gcd);
if (gcd == 1)
return;
}
// Normalize the dividend and the denominator.
std::transform(dividend.begin(), dividend.end(), dividend.begin(),
[gcd](int64_t &n) { return floor(n / gcd); });
divisor /= gcd;
}
/// Check if the pos^th identifier can be represented as a division using upper
/// bound inequality at position `ubIneq` and lower bound inequality at position
/// `lbIneq`.
///
/// Let `id` be the pos^th identifier, then `id` is equivalent to
/// `expr floordiv divisor` if there are constraints of the form:
/// 0 <= expr - divisor * id <= divisor - 1
/// Rearranging, we have:
/// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id'
/// -divisor * id + expr >= 0 <-- Upper bound for 'id'
///
/// For example:
/// 32*k >= 16*i + j - 31 <-- Lower bound for 'k'
/// 32*k <= 16*i + j <-- Upper bound for 'k'
/// expr = 16*i + j, divisor = 32
/// k = ( 16*i + j ) floordiv 32
///
/// 4q >= i + j - 2 <-- Lower bound for 'q'
/// 4q <= i + j + 1 <-- Upper bound for 'q'
/// expr = i + j + 1, divisor = 4
/// q = (i + j + 1) floordiv 4
//
/// This function also supports detecting divisions from bounds that are
/// strictly tighter than the division bounds described above, since tighter
/// bounds imply the division bounds. For example:
/// 4q - i - j + 2 >= 0 <-- Lower bound for 'q'
/// -4q + i + j >= 0 <-- Tight upper bound for 'q'
///
/// To extract floor divisions with tighter bounds, we assume that that the
/// constraints are of the form:
/// c <= expr - divisior * id <= divisor - 1, where 0 <= c <= divisor - 1
/// Rearranging, we have:
/// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id'
/// -divisor * id + expr - c >= 0 <-- Upper bound for 'id'
///
/// If successful, `expr` is set to dividend of the division and `divisor` is
/// set to the denominator of the division. The final division expression is
/// normalized by GCD.
static LogicalResult getDivRepr(const IntegerPolyhedron &cst, unsigned pos,
unsigned ubIneq, unsigned lbIneq,
SmallVector<int64_t, 8> &expr,
unsigned &divisor) {
assert(pos <= cst.getNumIds() && "Invalid identifier position");
assert(ubIneq <= cst.getNumInequalities() &&
"Invalid upper bound inequality position");
assert(lbIneq <= cst.getNumInequalities() &&
"Invalid upper bound inequality position");
// Extract divisor from the lower bound.
divisor = cst.atIneq(lbIneq, pos);
// First, check if the constraints are opposite of each other except the
// constant term.
unsigned i = 0, e = 0;
for (i = 0, e = cst.getNumIds(); i < e; ++i)
if (cst.atIneq(ubIneq, i) != -cst.atIneq(lbIneq, i))
break;
if (i < e)
return failure();
// Then, check if the constant term is of the proper form.
// Due to the form of the upper/lower bound inequalities, the sum of their
// constants is `divisor - 1 - c`. From this, we can extract c:
int64_t constantSum = cst.atIneq(lbIneq, cst.getNumCols() - 1) +
cst.atIneq(ubIneq, cst.getNumCols() - 1);
int64_t c = divisor - 1 - constantSum;
// Check if `c` satisfies the condition `0 <= c <= divisor - 1`. This also
// implictly checks that `divisor` is positive.
if (!(c >= 0 && c <= divisor - 1))
return failure();
// The inequality pair can be used to extract the division.
// Set `expr` to the dividend of the division except the constant term, which
// is set below.
expr.resize(cst.getNumCols(), 0);
for (i = 0, e = cst.getNumIds(); i < e; ++i)
if (i != pos)
expr[i] = cst.atIneq(ubIneq, i);
// From the upper bound inequality's form, its constant term is equal to the
// constant term of `expr`, minus `c`. From this,
// constant term of `expr` = constant term of upper bound + `c`.
expr.back() = cst.atIneq(ubIneq, cst.getNumCols() - 1) + c;
normalizeDivisionByGCD(expr, divisor);
return success();
}
/// Check if the pos^th identifier can be expressed as a floordiv of an affine
/// function of other identifiers (where the divisor is a positive constant).
/// `foundRepr` contains a boolean for each identifier indicating if the
/// explicit representation for that identifier has already been computed.
/// Returns the upper and lower bound inequalities using which the floordiv can
/// be computed. If the representation could be computed, `dividend` and
/// `denominator` are set. If the representation could not be computed,
/// `llvm::None` is returned.
Optional<std::pair<unsigned, unsigned>> presburger_utils::computeSingleVarRepr(
const IntegerPolyhedron &cst, ArrayRef<bool> foundRepr, unsigned pos,
SmallVector<int64_t, 8> ÷nd, unsigned &divisor) {
assert(pos < cst.getNumIds() && "invalid position");
assert(foundRepr.size() == cst.getNumIds() &&
"Size of foundRepr does not match total number of variables");
SmallVector<unsigned, 4> lbIndices, ubIndices;
cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices);
for (unsigned ubPos : ubIndices) {
for (unsigned lbPos : lbIndices) {
// Attempt to get divison representation from ubPos, lbPos.
if (failed(getDivRepr(cst, pos, ubPos, lbPos, dividend, divisor)))
continue;
// Check if the inequalities depend on a variable for which
// an explicit representation has not been found yet.
// Exit to avoid circular dependencies between divisions.
unsigned c, f;
for (c = 0, f = cst.getNumIds(); c < f; ++c) {
if (c == pos)
continue;
if (!foundRepr[c] && dividend[c] != 0)
break;
}
// Expression can't be constructed as it depends on a yet unknown
// identifier.
// TODO: Visit/compute the identifiers in an order so that this doesn't
// happen. More complex but much more efficient.
if (c < f)
continue;
return std::make_pair(ubPos, lbPos);
}
}
return llvm::None;
}