sql/rpl_rli_pdb.cc (1,820 lines of code) (raw):

/* Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "my_global.h" /* NO_EMBEDDED_ACCESS_CHECKS */ #include "sql_priv.h" #include "unireg.h" #include "rpl_rli_pdb.h" #include "rpl_slave.h" #include "sql_string.h" #include "sql_base.h" #include "transaction.h" #include "debug_sync.h" #include <hash.h> #include "rpl_slave_commit_order_manager.h" // Commit_order_manager #ifndef DBUG_OFF ulong w_rr= 0; uint mts_debug_concurrent_access= 0; #endif #define HASH_DYNAMIC_INIT 4 #define HASH_DYNAMIC_INCR 1 static const int LINES_IN_WORKER_INFO = 12; using std::min; using std::max; /** This function is called by both coordinator and workers. Upon receiving the STOP command, the workers will identify a maximum group index already executed (or under execution). All groups whose index are below or equal to the maximum group index will be applied by the workers before stopping. The workers with groups above the maximum group index will exit without applying these groups by setting their running status to "STOP_ACCEPTED". @param worker a pointer to the waiting Worker struct @param job_item a pointer to struct carrying a reference to an event @return true if STOP command gets accepted otherwise false is returned. */ bool handle_slave_worker_stop(Slave_worker *worker, Slave_job_item *job_item) { ulonglong group_index= 0; Relay_log_info *rli= worker->c_rli; mysql_mutex_lock(&rli->exit_count_lock); /* First, W calculates a group-"at-hands" index which is either the currently read ev group index, or the last executed group's one when the queue is empty. */ group_index= (job_item->data)? rli->gaq->get_job_group(((Log_event*) (job_item->data))->mts_group_idx)->total_seqno: worker->last_groups_assigned_index; /* The max updated index is being updated as long as exit_counter permits. That's stopped with the final W's increment of it. */ if (!worker->exit_incremented) { if (rli->exit_counter < rli->slave_parallel_workers) rli->max_updated_index = max(rli->max_updated_index, group_index); ++rli->exit_counter; worker->exit_incremented= true; DBUG_ASSERT(!is_mts_worker(current_thd)); } #ifndef DBUG_OFF else DBUG_ASSERT(is_mts_worker(current_thd)); #endif /* Now let's decide about the deferred exit to consider the empty queue and the counter value reached slave_parallel_workers. */ if (!job_item->data) { worker->running_status= Slave_worker::STOP_ACCEPTED; mysql_cond_signal(&worker->jobs_cond); mysql_mutex_unlock(&rli->exit_count_lock); return(true); } else if (rli->exit_counter == rli->slave_parallel_workers) { //over steppers should exit with accepting STOP if (group_index > rli->max_updated_index) { worker->running_status= Slave_worker::STOP_ACCEPTED; mysql_cond_signal(&worker->jobs_cond); mysql_mutex_unlock(&rli->exit_count_lock); return(true); } } mysql_mutex_unlock(&rli->exit_count_lock); return(false); } /** This function is called by both coordinator and workers. Both coordinator and workers contribute to max_updated_index. @param worker a pointer to the waiting Worker struct @param job_item a pointer to struct carrying a reference to an event @return true if STOP command gets accepted otherwise false is returned. */ bool set_max_updated_index_on_stop(Slave_worker *worker, Slave_job_item *job_item, ulong index) { head_queue(&worker->jobs, job_item, index); if (worker->running_status == Slave_worker::STOP) { if (handle_slave_worker_stop(worker, job_item)) return true; } return false; } /* Please every time you add a new field to the worker slave info, update what follows. For now, this is just used to get the number of fields. */ const char *info_slave_worker_fields []= { "id", /* These positions identify what has been executed. Notice that they are redudant and only the group_master_log_name and group_master_log_pos are really necessary. However, the additional information is kept to ease debugging. */ "group_relay_log_name", "group_relay_log_pos", "group_master_log_name", "group_master_log_pos", /* These positions identify what a worker knew about the coordinator at the time a job was assigned. Notice that they are redudant and are kept to ease debugging. */ "checkpoint_relay_log_name", "checkpoint_relay_log_pos", "checkpoint_master_log_name", "checkpoint_master_log_pos", /* Identify the greatest job, i.e. group, processed by a worker. */ "checkpoint_seqno", /* Maximum number of jobs that can be assigned to a worker. This information is necessary to read the next entry. */ "checkpoint_group_size", /* Bitmap used to identify what jobs were processed by a worker. */ "checkpoint_group_bitmap" }; /* Number of records in the mts partition hash below which entries with zero usage are tolerated so could be quickly recycled. */ ulong mts_partition_hash_soft_max= 16; Slave_worker::Slave_worker(Relay_log_info *rli #ifdef HAVE_PSI_INTERFACE ,PSI_mutex_key *param_key_info_run_lock, PSI_mutex_key *param_key_info_data_lock, PSI_mutex_key *param_key_info_sleep_lock, PSI_mutex_key *param_key_info_thd_lock, PSI_mutex_key *param_key_info_data_cond, PSI_mutex_key *param_key_info_start_cond, PSI_mutex_key *param_key_info_stop_cond, PSI_mutex_key *param_key_info_sleep_cond #endif , uint param_id ) : Relay_log_info(FALSE #ifdef HAVE_PSI_INTERFACE ,param_key_info_run_lock, param_key_info_data_lock, param_key_info_sleep_lock, param_key_info_thd_lock, param_key_info_data_cond, param_key_info_start_cond, param_key_info_stop_cond, param_key_info_sleep_cond #endif , param_id + 1 ), c_rli(rli), id(param_id), checkpoint_relay_log_pos(0), checkpoint_master_log_pos(0), checkpoint_seqno(0), running_status(NOT_RUNNING), exit_incremented(false) { /* In the future, it would be great if we use only one identifier. So when factoring out this code, please, consider this. */ DBUG_ASSERT(internal_id == id + 1); worker_last_gtid[0] = 0; checkpoint_relay_log_name[0]= 0; checkpoint_master_log_name[0]= 0; my_init_dynamic_array(&curr_group_exec_parts, sizeof(db_worker_hash_entry*), SLAVE_INIT_DBS_IN_GROUP, 1); current_event_index = 0; last_current_event_index = 0; trans_retries = 0; my_init_dynamic_array(&worker_gtid_infos, sizeof(Gtid_info *), 1, 1); mysql_mutex_init(key_mutex_slave_parallel_worker, &jobs_lock, MY_MUTEX_INIT_FAST); mysql_cond_init(key_cond_slave_parallel_worker, &jobs_cond, NULL); } Slave_worker::~Slave_worker() { end_info(); if (jobs.inited_queue) { DBUG_ASSERT(jobs.Q.elements == jobs.size); delete_dynamic(&jobs.Q); } delete_dynamic(&curr_group_exec_parts); delete_dynamic(&worker_gtid_infos); mysql_mutex_destroy(&jobs_lock); mysql_cond_destroy(&jobs_cond); mysql_mutex_lock(&info_thd_lock); info_thd= NULL; set_rli_description_event(NULL); mysql_mutex_unlock(&info_thd_lock); } /** Method is executed by Coordinator at Worker startup time to initialize members parly with values supplied by Coordinator through rli. @param rli Coordinator's Relay_log_info pointer @param i identifier of the Worker @return 0 success non-zero failure */ int Slave_worker::init_worker(Relay_log_info * rli, ulong i) { DBUG_ENTER("Slave_worker::init_worker"); DBUG_ASSERT(!rli->info_thd->is_error()); uint k; Slave_job_item empty= {NULL}; c_rli= rli; reset_order_commit_deadlock(); set_commit_order_manager(c_rli->get_commit_order_manager()); if (rli_init_info(false) || DBUG_EVALUATE_IF("inject_init_worker_init_info_fault", true, false)) DBUG_RETURN(1); id= i; curr_group_exec_parts.elements= 0; relay_log_change_notified= FALSE; // the 1st group to contain relaylog name checkpoint_notified= FALSE; // the same as above master_log_change_notified= false;// W learns master log during 1st group exec bitmap_shifted= 0; workers= c_rli->workers; // shallow copying is sufficient wq_size_waits_cnt= groups_done= events_done= curr_jobs= 0; usage_partition= 0; end_group_sets_max_dbs= false; gaq_index= last_group_done_index= c_rli->gaq->size; // out of range last_groups_assigned_index=0; DBUG_ASSERT(!jobs.inited_queue); jobs.avail= 0; jobs.len= 0; jobs.overfill= FALSE; // todo: move into Slave_jobs_queue constructor jobs.waited_overfill= 0; jobs.entry= jobs.size= c_rli->mts_slave_worker_queue_len_max; DBUG_EXECUTE_IF("slave_worker_queue_size", { c_rli->mts_slave_worker_queue_len_max= jobs.entry = jobs.size = 5; } ); jobs.inited_queue= true; curr_group_seen_begin= curr_group_seen_gtid= false; curr_group_seen_metadata= false; my_init_dynamic_array(&jobs.Q, sizeof(Slave_job_item), jobs.size, 0); for (k= 0; k < jobs.size; k++) insert_dynamic(&jobs.Q, (uchar*) &empty); DBUG_ASSERT(jobs.Q.elements == jobs.size); wq_overrun_cnt= excess_cnt= 0; underrun_level= (ulong) ((rli->mts_worker_underrun_level * jobs.size) / 100.0); // overrun level is symmetric to underrun (as underrun to the full queue) overrun_level= jobs.size - underrun_level; // copy these over for easy access mts_dependency_replication= c_rli->mts_dependency_replication; mts_dependency_size= c_rli->mts_dependency_size; mts_dependency_refill_threshold= c_rli->mts_dependency_refill_threshold; mts_dependency_max_keys= c_rli->mts_dependency_max_keys; mts_dependency_order_commits= c_rli->mts_dependency_order_commits; DBUG_RETURN(0); } /** A part of Slave worker iitializer that provides a minimum context for MTS recovery. @param is_gaps_collecting_phase clarifies what state the caller executes this method from. When it's @c true that is @c mts_recovery_groups() and Worker should restore the last session time info which is processed to collect gaps that is not executed transactions (groups). Such recovery Slave_worker intance is destroyed at the end of @c mts_recovery_groups(). Whet it's @c false Slave_worker is initialized for the run time nad should not read the last session time stale info. Its info will be ultimately reset once all gaps are executed to finish off recovery. @return 0 on success, non-zero for a failure */ int Slave_worker::rli_init_info(bool is_gaps_collecting_phase) { enum_return_check return_check= ERROR_CHECKING_REPOSITORY; DBUG_ENTER("Slave_worker::rli_init_info"); if (inited) DBUG_RETURN(0); /* Worker bitmap size depends on recovery mode. If it is gaps collecting the bitmaps must be capable to accept up to MTS_MAX_BITS_IN_GROUP of bits. */ size_t num_bits= is_gaps_collecting_phase ? MTS_MAX_BITS_IN_GROUP : c_rli->checkpoint_group; /* This checks if the repository was created before and thus there will be values to be read. Please, do not move this call after the handler->init_info(). */ return_check= check_info(); if (return_check == ERROR_CHECKING_REPOSITORY || (return_check == REPOSITORY_DOES_NOT_EXIST && is_gaps_collecting_phase)) goto err; if (handler->init_info()) goto err; bitmap_init(&group_executed, NULL, num_bits, FALSE); bitmap_init(&group_shifted, NULL, num_bits, FALSE); if (is_gaps_collecting_phase && (DBUG_EVALUATE_IF("mts_slave_worker_init_at_gaps_fails", true, false) || read_info(handler))) { bitmap_free(&group_executed); bitmap_free(&group_shifted); goto err; } inited= 1; DBUG_RETURN(0); err: // todo: handler->end_info(uidx, nidx); inited= 0; sql_print_error("Error reading slave worker configuration"); DBUG_RETURN(1); } void Slave_worker::end_info() { DBUG_ENTER("Slave_worker::end_info"); if (!inited) DBUG_VOID_RETURN; if (handler) handler->end_info(); if (inited) { bitmap_free(&group_executed); bitmap_free(&group_shifted); } inited = 0; DBUG_VOID_RETURN; } int Slave_worker::flush_info(const bool force) { DBUG_ENTER("Slave_worker::flush_info"); if (!inited) DBUG_RETURN(0); /* We update the sync_period at this point because only here we now that we are handling a Slave_worker. This needs to be update every time we call flush because the option may be dinamically set. */ handler->set_sync_period(sync_relayloginfo_period); #if defined(FLUSH_REP_INFO) if (!handler->need_write(force)) DBUG_RETURN(0); #endif if (write_info(handler)) goto err; if (handler->flush_info(force)) goto err; DBUG_RETURN(0); err: sql_print_error("Error writing slave worker configuration"); DBUG_RETURN(1); } bool Slave_worker::read_info(Rpl_info_handler *from) { DBUG_ENTER("Slave_worker::read_info"); ulong temp_group_relay_log_pos= 0; ulong temp_group_master_log_pos= 0; ulong temp_checkpoint_relay_log_pos= 0; ulong temp_checkpoint_master_log_pos= 0; ulong temp_checkpoint_seqno= 0; ulong nbytes= 0; uchar *buffer= (uchar *) group_executed.bitmap; int temp_internal_id= 0; if (from->prepare_info_for_read()) DBUG_RETURN(TRUE); if (from->get_info((int *) &temp_internal_id, (int) 0) || from->get_info(group_relay_log_name, (size_t) sizeof(group_relay_log_name), (char *) "") || from->get_info((ulong *) &temp_group_relay_log_pos, (ulong) 0) || from->get_info(group_master_log_name, (size_t) sizeof(group_master_log_name), (char *) "") || from->get_info((ulong *) &temp_group_master_log_pos, (ulong) 0) || from->get_info(checkpoint_relay_log_name, (size_t) sizeof(checkpoint_relay_log_name), (char *) "") || from->get_info((ulong *) &temp_checkpoint_relay_log_pos, (ulong) 0) || from->get_info(checkpoint_master_log_name, (size_t) sizeof(checkpoint_master_log_name), (char *) "") || from->get_info((ulong *) &temp_checkpoint_master_log_pos, (ulong) 0) || from->get_info((ulong *) &temp_checkpoint_seqno, (ulong) 0) || from->get_info(&nbytes, (ulong) 0) || from->get_info(buffer, (size_t) nbytes, (uchar *) 0)) DBUG_RETURN(TRUE); DBUG_ASSERT(nbytes <= no_bytes_in_map(&group_executed)); internal_id=(uint) temp_internal_id; group_relay_log_pos= temp_group_relay_log_pos; group_master_log_pos= temp_group_master_log_pos; checkpoint_relay_log_pos= temp_checkpoint_relay_log_pos; checkpoint_master_log_pos= temp_checkpoint_master_log_pos; checkpoint_seqno= temp_checkpoint_seqno; DBUG_RETURN(FALSE); } bool Slave_worker::write_info(Rpl_info_handler *to) { DBUG_ENTER("Master_info::write_info"); ulong nbytes= (ulong) no_bytes_in_map(&group_executed); uchar *buffer= (uchar*) group_executed.bitmap; DBUG_ASSERT(nbytes <= (c_rli->checkpoint_group + 7) / 8); if (to->prepare_info_for_write()) DBUG_RETURN(TRUE); if (to->get_rpl_info_type() != INFO_REPOSITORY_FILE) { if (to->set_info((int) internal_id) || to->set_info(group_relay_log_name) || to->set_info((ulong) group_relay_log_pos) || to->set_info(group_master_log_name) || to->set_info((ulong) group_master_log_pos) || to->set_info(checkpoint_relay_log_name) || to->set_info((ulong) checkpoint_relay_log_pos) || to->set_info(checkpoint_master_log_name) || to->set_info((ulong) checkpoint_master_log_pos) || to->set_info((ulong) checkpoint_seqno) || to->set_info(nbytes) || to->set_info(buffer, (size_t) nbytes)) DBUG_RETURN(TRUE); } else { if (to->set_info(LINES_IN_WORKER_INFO - 1, "%d\n%s\n%lu\n%s\n%lu\n%s\n%lu\n%s\n%lu\n%lu\n%lu\n", (int) internal_id, group_relay_log_name, (ulong) group_relay_log_pos, group_master_log_name, (ulong) group_master_log_pos, checkpoint_relay_log_name, (ulong) checkpoint_relay_log_pos, checkpoint_master_log_name, (ulong) checkpoint_master_log_pos, (ulong) checkpoint_seqno, nbytes) || to->set_info(buffer, (size_t) nbytes)) DBUG_RETURN(TRUE); } DBUG_RETURN(FALSE); } /** Clean up a part of Worker info table that is regarded in in gaps collecting at recovery. This worker won't contribute to recovery bitmap at future slave restart (see @c mts_recovery_groups). @retrun FALSE as success TRUE as failure */ bool Slave_worker::reset_recovery_info() { DBUG_ENTER("Slave_worker::reset_recovery_info"); set_group_master_log_name(""); set_group_master_log_pos(0); DBUG_RETURN(flush_info(true)); } size_t Slave_worker::get_number_worker_fields() { return sizeof(info_slave_worker_fields)/sizeof(info_slave_worker_fields[0]); } const char* Slave_worker::get_master_log_name() { Slave_job_group* ptr_g= c_rli->gaq->get_job_group(gaq_index); return (ptr_g->checkpoint_log_name != NULL) ? ptr_g->checkpoint_log_name : checkpoint_master_log_name; } bool Slave_worker::commit_positions(Log_event *ev, Slave_job_group* ptr_g, bool force) { int error = 0; DBUG_ENTER("Slave_worker::checkpoint_positions"); /* Initial value of checkpoint_master_log_name is learned from group_master_log_name. The latter can be passed to Worker at rare event of master binlog rotation. This initialization is needed to provide to Worker info on physical coordiates during execution of the very first group after a rotation. */ if (ptr_g->group_master_log_name != NULL) { strmake(group_master_log_name, ptr_g->group_master_log_name, sizeof(group_master_log_name) - 1); my_free(ptr_g->group_master_log_name); ptr_g->group_master_log_name= NULL; strmake(checkpoint_master_log_name, group_master_log_name, sizeof(checkpoint_master_log_name) - 1); } if (ptr_g->checkpoint_log_name != NULL) { if (ptr_g->checkpoint_relay_log_name != NULL) strmake(checkpoint_relay_log_name, ptr_g->checkpoint_relay_log_name, sizeof(checkpoint_relay_log_name) - 1); checkpoint_relay_log_pos= ptr_g->checkpoint_relay_log_pos; strmake(checkpoint_master_log_name, ptr_g->checkpoint_log_name, sizeof(checkpoint_master_log_name) - 1); checkpoint_master_log_pos= ptr_g->checkpoint_log_pos; my_free(ptr_g->checkpoint_log_name); ptr_g->checkpoint_log_name= NULL; if (ptr_g->checkpoint_relay_log_name != NULL) my_free(ptr_g->checkpoint_relay_log_name); ptr_g->checkpoint_relay_log_name= NULL; bitmap_copy(&group_shifted, &group_executed); bitmap_clear_all(&group_executed); for (uint pos= ptr_g->shifted; pos < c_rli->checkpoint_group; pos++) { if (bitmap_is_set(&group_shifted, pos)) bitmap_set_bit(&group_executed, pos - ptr_g->shifted); } } /* Extracts an updated relay-log name to store in Worker's rli. */ if (ptr_g->group_relay_log_name) { DBUG_ASSERT(strlen(ptr_g->group_relay_log_name) + 1 <= sizeof(group_relay_log_name)); strmake(group_relay_log_name, ptr_g->group_relay_log_name, sizeof(group_relay_log_name) - 1); } DBUG_ASSERT(ptr_g->checkpoint_seqno <= (c_rli->checkpoint_group - 1)); bitmap_set_bit(&group_executed, ptr_g->checkpoint_seqno); checkpoint_seqno= ptr_g->checkpoint_seqno; group_relay_log_pos= ev->future_event_relay_log_pos; group_master_log_pos= ev->log_pos; /* Directly accessing c_rli->get_group_master_log_name() does not represent a concurrency issue because the current code places a synchronization point when master rotates. */ strmake(group_master_log_name, c_rli->get_group_master_log_name(), sizeof(group_master_log_name)-1); DBUG_PRINT("mts", ("Committing worker-id %lu group master log pos %llu " "group master log name %s checkpoint sequence number %lu.", id, group_master_log_pos, group_master_log_name, checkpoint_seqno)); DBUG_EXECUTE_IF("mts_debug_concurrent_access", { mts_debug_concurrent_access++; }; ); if (gtid_mode > 0 && worker_last_gtid[0] != 0 && !info_thd->is_enabled_idempotent_recovery() && !ev->is_relay_log_event()) { for (uint i = 0; i < worker_gtid_infos.elements; i++) { Gtid_info *gtid_info = *dynamic_element(&worker_gtid_infos, i, Gtid_info**); DBUG_ASSERT(gtid_info); #ifndef DBUG_OFF DBUG_ASSERT(!gtid_info->skip_event(worker_last_gtid)); #endif // Need to force the gtid_info flush in the following cases // 1. If this is XID_EVENT // 2. If this is a DDL statement. // 3. If this is the first time we are updating the row in the // slave_gtid_info table. bool gtid_info_flush = (ev->get_type_code() == XID_EVENT) || !ev->ends_group() || (strcmp(gtid_info->get_last_gtid_string(), "") == 0); gtid_info->set_last_gtid(worker_last_gtid); if (ev->get_type_code() == XID_EVENT && slave_gtid_info == SLAVE_GTID_INFO_OPTIMIZED) { // Delegate to storage engine. info_thd->append_slave_gtid_info(gtid_info->get_internal_id(), gtid_info->get_database_name(), gtid_info->get_last_gtid_string()); } else if (slave_gtid_info == SLAVE_GTID_INFO_ON && (error = gtid_info->flush_info(gtid_info_flush))) { reset_dynamic(&worker_gtid_infos); DBUG_RETURN(error); } } } worker_last_gtid[0] = 0; reset_dynamic(&worker_gtid_infos); DBUG_RETURN(flush_info(force)); } void Slave_worker::rollback_positions(Slave_job_group* ptr_g) { if (!is_transactional()) { bitmap_clear_bit(&group_executed, ptr_g->checkpoint_seqno); flush_info(false); } } HASH mapping_db_to_worker; bool inited_hash_workers= FALSE; #ifdef HAVE_PSI_INTERFACE PSI_mutex_key key_mutex_slave_worker_hash; PSI_cond_key key_cond_slave_worker_hash; #endif mysql_mutex_t slave_worker_hash_lock; mysql_cond_t slave_worker_hash_cond; extern "C" uchar *get_key(const uchar *record, size_t *length, my_bool not_used MY_ATTRIBUTE((unused))) { DBUG_ENTER("get_key"); db_worker_hash_entry *entry=(db_worker_hash_entry *) record; *length= strlen(entry->db); DBUG_PRINT("info", ("get_key %s, %d", entry->db, (int) *length)); DBUG_RETURN((uchar*) entry->db); } static void free_entry(db_worker_hash_entry *entry) { THD *c_thd= current_thd; DBUG_ENTER("free_entry"); DBUG_PRINT("info", ("free_entry %s, %d", entry->db, (int) strlen(entry->db))); DBUG_ASSERT(c_thd->system_thread == SYSTEM_THREAD_SLAVE_SQL); /* Although assert is correct valgrind senses entry->worker can be freed. DBUG_ASSERT(entry->usage == 0 || !entry->worker || // last entry owner could have errored out entry->worker->running_status != Slave_worker::RUNNING); */ mts_move_temp_tables_to_thd(c_thd, entry->temporary_tables); entry->temporary_tables= NULL; my_free((void *) entry->db); my_free(entry); DBUG_VOID_RETURN; } bool init_hash_workers(ulong slave_parallel_workers) { DBUG_ENTER("init_hash_workers"); inited_hash_workers= (my_hash_init(&mapping_db_to_worker, &my_charset_bin, 0, 0, 0, get_key, (my_hash_free_key) free_entry, 0) == 0); if (inited_hash_workers) { #ifdef HAVE_PSI_INTERFACE mysql_mutex_init(key_mutex_slave_worker_hash, &slave_worker_hash_lock, MY_MUTEX_INIT_FAST); mysql_cond_init(key_cond_slave_worker_hash, &slave_worker_hash_cond, NULL); #else mysql_mutex_init(NULL, &slave_worker_hash_lock, MY_MUTEX_INIT_FAST); mysql_cond_init(NULL, &slave_worker_hash_cond, NULL); #endif } DBUG_RETURN (!inited_hash_workers); } void destroy_hash_workers(Relay_log_info *rli) { DBUG_ENTER("destroy_hash_workers"); if (inited_hash_workers) { my_hash_free(&mapping_db_to_worker); mysql_mutex_destroy(&slave_worker_hash_lock); mysql_cond_destroy(&slave_worker_hash_cond); inited_hash_workers= false; } DBUG_VOID_RETURN; } /** Relocating temporary table reference into @c entry's table list head. Sources can be the coordinator's and the Worker's thd->temporary_tables. @param table TABLE instance pointer @param thd THD instance pointer of the source of relocation @param entry db_worker_hash_entry instance pointer @note thd->temporary_tables can become NULL @return the pointer to a table following the unlinked */ TABLE* mts_move_temp_table_to_entry(TABLE *table, THD *thd, db_worker_hash_entry *entry) { TABLE *ret= table->next; if (table->prev) { table->prev->next= table->next; if (table->prev->next) table->next->prev= table->prev; } else { /* removing the first item from the list */ DBUG_ASSERT(table == thd->temporary_tables); thd->temporary_tables= table->next; if (thd->temporary_tables) table->next->prev= 0; } table->next= entry->temporary_tables; table->prev= 0; if (table->next) table->next->prev= table; entry->temporary_tables= table; return ret; } /** Relocation of the list of temporary tables to thd->temporary_tables. @param thd THD instance pointer of the destination @param temporary_tables the source temporary_tables list @note destorying references to the source list, if necessary, is left to the caller. @return the post-merge value of thd->temporary_tables. */ TABLE* mts_move_temp_tables_to_thd(THD *thd, TABLE *temporary_tables) { TABLE *table= temporary_tables; if (!table) return NULL; // accept only the list head DBUG_ASSERT(!temporary_tables->prev); // walk along the source list and associate the tables with thd do { if (table->file) table->file->register_tmp_table_disk_usage(false /* detach */); table->in_use= thd; if (table->file) table->file->register_tmp_table_disk_usage(true /* attach */); } while(table->next && (table= table->next)); // link the former list against the tail of the source list if (thd->temporary_tables) thd->temporary_tables->prev= table; table->next= thd->temporary_tables; thd->temporary_tables= temporary_tables; return thd->temporary_tables; } /** Relocating references of temporary tables of a database of the entry argument from THD into the entry. @param thd THD pointer of the source temporary_tables list @param entry a pointer to db_worker_hash_entry record containing database descriptor and temporary_tables list. */ static void move_temp_tables_to_entry(THD* thd, db_worker_hash_entry* entry) { for (TABLE *table= thd->temporary_tables; table;) { if (strcmp(table->s->db.str, entry->db) == 0) { // table pointer is shifted inside the function table= mts_move_temp_table_to_entry(table, thd, entry); } else { table= table->next; } } } static double calculate_imbalance(const DYNAMIC_ARRAY *ws) { double max_usage= 0; double total_usage= 0; std::vector<ulong> load_on_workers(ws->elements); DBUG_ENTER("calculate_imbalance"); mysql_mutex_assert_owner(&slave_worker_hash_lock); // case: if the number of workers == number of db's // nothing can be done to rebalance the workers if (ws->elements == mapping_db_to_worker.records) DBUG_RETURN(0); // calculate the total load per worker for (uint i= 0; i < mapping_db_to_worker.records; ++i) { db_worker_hash_entry *entry= (db_worker_hash_entry*) my_hash_element(&mapping_db_to_worker, i); load_on_workers[entry->worker->id]+= entry->load; } for (ulong load : load_on_workers) { total_usage += load; if (load > max_usage) max_usage = load; } if (total_usage == 0) DBUG_RETURN(0); DBUG_RETURN(max_usage / total_usage * 100); } void rebalance_workers(Relay_log_info *rli) { DBUG_ENTER("rebalance_workers"); DBUG_ASSERT(!rli->curr_group_seen_begin && !rli->curr_group_seen_gtid); const DYNAMIC_ARRAY *ws= &rli->workers; std::priority_queue<worker_load, std::vector<worker_load>, std::greater<worker_load>> heap; Slave_worker *current_worker= NULL; mysql_mutex_lock(&slave_worker_hash_lock); double imbalance= calculate_imbalance(ws); if (imbalance < opt_mts_imbalance_threshold) { mysql_mutex_unlock(&slave_worker_hash_lock); DBUG_VOID_RETURN; } // initializing the heap for (ulong i= 0; i< ws->elements; ++i) { current_worker= *dynamic_element(ws, i, Slave_worker**); heap.push(worker_load(current_worker)); } double new_max_wrk_load= 0; double total_wrk_load= 0; // build the heap according to the current load for (uint i= 0; i < mapping_db_to_worker.records; ++i) { db_worker_hash_entry *entry= (db_worker_hash_entry*) my_hash_element(&mapping_db_to_worker, i); // assign least occupied worker worker_load wrk_load= heap.top(); wrk_load.db_entries.push_back(entry); heap.pop(); wrk_load.load += entry->load; if (new_max_wrk_load < wrk_load.load) new_max_wrk_load = wrk_load.load; total_wrk_load+= entry->load; heap.push(wrk_load); } // before we remap, check if the rebalancing will make the imbalance // less than the threshold if no we should leave the map alone and // there is no need to sync the workers // NOTE: the comparision method here should be equivalent to @ // calculate_imbalance if (total_wrk_load && new_max_wrk_load / total_wrk_load * 100 > opt_mts_imbalance_threshold) { mysql_mutex_unlock(&slave_worker_hash_lock); DBUG_VOID_RETURN; } // remap the db->worker map while (!heap.empty()) { worker_load wrk_load= heap.top(); for (db_worker_hash_entry *entry : wrk_load.db_entries) { entry->worker= wrk_load.worker; } heap.pop(); } mysql_mutex_unlock(&slave_worker_hash_lock); // wait for all workers to finish wait_for_workers_to_finish(rli); DBUG_VOID_RETURN; } /** The function produces a reference to the struct of a Worker that has been or will be engaged to process the @c dbname -keyed partition (D). It checks a local to Coordinator CGAP list first and returns @c last_assigned_worker when found (todo: assert). Otherwise, the partition is appended to the current group list: CGAP .= D here .= is concatenate operation, and a possible D's Worker id is searched in Assigned Partition Hash (APH) that collects tuples (P, W_id, U, mutex, cond). In case not found, W_d := W_c unless W_c is NULL. When W_c is NULL it is assigned to a least occupied as defined by @c get_least_occupied_worker(). W_d := W_c := W_{least_occupied} APH .= a new (D, W_d, 1) In a case APH contains W_d == W_c, (assert U >= 1) update APH set U++ where APH.P = D The case APH contains a W_d != W_c != NULL assigned to D-partition represents the hashing conflict and is handled as the following: a. marks the record of APH with a flag requesting to signal in the cond var when `U' the usage counter drops to zero by the other Worker; b. waits for the other Worker to finish tasks on that partition and gets the signal; c. updates the APH record to point to the first Worker (naturally, U := 1), scheduled the event, and goes back into the parallel mode @param dbname pointer to c-string containing database name It can be empty string to indicate specific locking to faciliate sequential applying. @param rli pointer to Coordinators relay-log-info instance @param ptr_entry reference to a pointer to the resulted entry in the Assigne Partition Hash where the entry's pointer is stored at return. @param need_temp_tables if FALSE migration of temporary tables not needed @param last_worker caller opts for this Worker, it must be rli->last_assigned_worker if one is determined. @note modifies CGAP, APH and unlinks @c dbname -keyd temporary tables from C's thd->temporary_tables to move them into the entry record. @return the pointer to a Worker struct */ Slave_worker *map_db_to_worker(const char *dbname, Relay_log_info *rli, db_worker_hash_entry **ptr_entry, bool need_temp_tables, Slave_worker *last_worker) { uint i; DYNAMIC_ARRAY *workers= &rli->workers; /* A dynamic array to store the mapping_db_to_worker hash elements that needs to be deleted, since deleting the hash entires while iterating over it is wrong. */ DYNAMIC_ARRAY hash_element; THD *thd= rli->info_thd; DBUG_ENTER("map_db_to_worker"); DBUG_ASSERT(!rli->last_assigned_worker || rli->last_assigned_worker == last_worker); if (!inited_hash_workers) DBUG_RETURN(NULL); db_worker_hash_entry *entry= NULL; my_hash_value_type hash_value; uchar dblength= (uint) strlen(dbname); // Search in CGAP for (i= 0; i < rli->curr_group_assigned_parts.elements; i++) { entry= * (db_worker_hash_entry **) dynamic_array_ptr(&rli->curr_group_assigned_parts, i); if ((uchar) entry->db_len != dblength) continue; else if (strncmp(entry->db, const_cast<char*>(dbname), dblength) == 0) { *ptr_entry= entry; DBUG_RETURN(last_worker); } } DBUG_PRINT("info", ("Searching for %s, %d", dbname, dblength)); hash_value= my_calc_hash(&mapping_db_to_worker, (uchar*) dbname, dblength); mysql_mutex_lock(&slave_worker_hash_lock); entry= (db_worker_hash_entry *) my_hash_search_using_hash_value(&mapping_db_to_worker, hash_value, (uchar*) dbname, dblength); if (!entry) { /* The database name was not found which means that a worker never processed events from that database. In such case, we need to map the database to a worker my inserting an entry into the hash map. */ my_bool ret; char *db= NULL; mysql_mutex_unlock(&slave_worker_hash_lock); DBUG_PRINT("info", ("Inserting %s, %d", dbname, dblength)); /* Allocate an entry to be inserted and if the operation fails an error is returned. */ if (!(db= (char *) my_malloc((size_t) dblength + 1, MYF(0)))) goto err; if (!(entry= (db_worker_hash_entry *) my_malloc(sizeof(db_worker_hash_entry), MYF(0)))) { my_free(db); goto err; } strmov(db, dbname); entry->db= db; entry->db_len= strlen(db); entry->usage= 1; entry->load= 1; entry->temporary_tables= NULL; /* Unless \exists the last assigned Worker, get a free worker based on a policy described in the function get_least_occupied_worker(). */ mysql_mutex_lock(&slave_worker_hash_lock); entry->worker= (!last_worker) ? get_least_occupied_worker(workers) : last_worker; entry->worker->usage_partition++; if (mapping_db_to_worker.records > mts_partition_hash_soft_max) { /* remove zero-usage (todo: rare or long ago scheduled) records. Store the element of the hash in a dynamic array after checking whether the usage of the hash entry is 0 or not. We later free it from the HASH. */ my_init_dynamic_array(&hash_element, sizeof(db_worker_hash_entry *), HASH_DYNAMIC_INIT, HASH_DYNAMIC_INCR); for (uint i= 0; i < mapping_db_to_worker.records; i++) { DBUG_ASSERT(!entry->temporary_tables || !entry->temporary_tables->prev); DBUG_ASSERT(!thd->temporary_tables || !thd->temporary_tables->prev); db_worker_hash_entry *entry= (db_worker_hash_entry*) my_hash_element(&mapping_db_to_worker, i); if (entry->usage == 0) { mts_move_temp_tables_to_thd(thd, entry->temporary_tables); entry->temporary_tables= NULL; /* Push the element in the dynamic array*/ push_dynamic(&hash_element, (uchar*) &entry); } } /* Delete the hash element based on the usage */ for (uint i=0; i < hash_element.elements; i++) { db_worker_hash_entry *temp_entry= *(db_worker_hash_entry **) dynamic_array_ptr(&hash_element, i); my_hash_delete(&mapping_db_to_worker, (uchar*) temp_entry); } /* Deleting the dynamic array */ delete_dynamic(&hash_element); } ret= my_hash_insert(&mapping_db_to_worker, (uchar*) entry); if (ret) { my_free(db); my_free(entry); entry= NULL; goto err; } DBUG_PRINT("info", ("Inserted %s, %d", entry->db, (int) strlen(entry->db))); } else { /* There is a record. Either */ if (entry->usage == 0) { entry->worker= (!last_worker) ? get_least_occupied_worker(workers) : last_worker; entry->worker->usage_partition++; entry->usage++; entry->load++; } else if (entry->worker == last_worker || !last_worker) { DBUG_ASSERT(entry->worker); entry->usage++; entry->load++; } else { // The case APH contains a W_d != W_c != NULL assigned to // D-partition represents // the hashing conflict and is handled as the following: PSI_stage_info old_stage; DBUG_ASSERT(last_worker != NULL && rli->curr_group_assigned_parts.elements > 0); // future assignenment and marking at the same time entry->worker= last_worker; // loop while a user thread is stopping Coordinator gracefully do { thd->ENTER_COND(&slave_worker_hash_cond, &slave_worker_hash_lock, &stage_slave_waiting_worker_to_release_partition, &old_stage); mysql_cond_wait(&slave_worker_hash_cond, &slave_worker_hash_lock); } while (entry->usage != 0 && !thd->killed); thd->EXIT_COND(&old_stage); if (thd->killed) { entry= NULL; goto err; } mysql_mutex_lock(&slave_worker_hash_lock); entry->usage= 1; entry->load= 1; entry->worker->usage_partition++; } } /* relocation belonging to db temporary tables from C to W via entry */ if (entry->usage == 1 && need_temp_tables) { if (!entry->temporary_tables) { if (entry->db_len != 0) { move_temp_tables_to_entry(thd, entry); } else { entry->temporary_tables= thd->temporary_tables; thd->temporary_tables= NULL; } } #ifndef DBUG_OFF else { // all entries must have been emptied from temps by the caller for (TABLE *table= thd->temporary_tables; table; table= table->next) { DBUG_ASSERT(0 != strcmp(table->s->db.str, entry->db)); } } #endif } mysql_mutex_unlock(&slave_worker_hash_lock); DBUG_ASSERT(entry); err: if (entry) { DBUG_PRINT("info", ("Updating %s with worker %lu", entry->db, entry->worker->id)); insert_dynamic(&rli->curr_group_assigned_parts, (uchar*) &entry); *ptr_entry= entry; } DBUG_RETURN(entry ? entry->worker : NULL); } /** least_occupied in partition number sense. This might be too coarse and computing based on assigned task (todo) is a possibility. Testing purpose round-roubin-like algorithm can be activated in debug built by tests that need it. @param ws dynarray of pointers to Slave_worker @return a pointer to chosen Slave_worker instance */ Slave_worker *get_least_occupied_worker(DYNAMIC_ARRAY *ws) { long usage= LONG_MAX; Slave_worker **ptr_current_worker= NULL, *worker= NULL; ulong i= 0; DBUG_ENTER("get_least_occupied_worker"); DBUG_EXECUTE_IF("mts_distribute_round_robin", { worker= *((Slave_worker **) dynamic_array_ptr(ws, w_rr % ws->elements)); sql_print_information("Chosing worker id %lu, the following " "is going to be %lu", worker->id, w_rr % ws->elements); DBUG_RETURN(worker); }); for (i= 0; i< ws->elements; i++) { ptr_current_worker= (Slave_worker **) dynamic_array_ptr(ws, i); if ((*ptr_current_worker)->usage_partition <= usage) { worker= *ptr_current_worker; usage= (*ptr_current_worker)->usage_partition; } } DBUG_ASSERT(worker != NULL); DBUG_RETURN(worker); } bool Slave_worker::worker_sleep(ulong secs) { bool ret= false; struct timespec abstime; mysql_mutex_t *lock= &jobs_lock; mysql_cond_t *cond= &jobs_cond; /* Absolute system time at which the sleep time expires. */ set_timespec(abstime, secs); mysql_mutex_lock(lock); info_thd->ENTER_COND(cond, lock, nullptr, nullptr); while (!(ret = info_thd->killed || running_status != RUNNING)) { int error= mysql_cond_timedwait(cond, lock, &abstime); if (error == ETIMEDOUT || error == ETIME) break; } info_thd->EXIT_COND(nullptr); return ret; } /** Deallocation routine to cancel out few effects of @c map_db_to_worker(). Involved into processing of the group APH tuples are updated. @c last_group_done_index member is set to the GAQ index of the current group. CGEP the Worker partition cache is cleaned up. @param ev a pointer to Log_event @param error error code after processing the event by caller. Reset to 0 if worker hits a temporary error. @param temporary_error This value will be set to true if worker hit a temporary error. */ void Slave_worker::slave_worker_ends_group(Log_event* ev, int &error, bool &temporary_error) { DBUG_ENTER("Slave_worker::slave_worker_ends_group"); curr_group_seen_gtid= curr_group_seen_begin= false; if (!error) { Slave_committed_queue *gaq= c_rli->gaq; Slave_job_group *ptr_g= gaq->get_job_group(gaq_index); DBUG_ASSERT(gaq_index == ev->mts_group_idx); /* It guarantees that the worker is removed from order commit queue when its transaction doesn't binlog anything. It will break innodb group commit, but it should rarely happen. */ if (get_commit_order_manager()) get_commit_order_manager()->report_commit(this); // first ever group must have relay log name DBUG_ASSERT(last_group_done_index != c_rli->gaq->size || ptr_g->group_relay_log_name != NULL); DBUG_ASSERT(ptr_g->worker_id == id); if (ev->get_type_code() != XID_EVENT) { commit_positions(ev, ptr_g, false); DBUG_EXECUTE_IF("crash_after_commit_and_update_pos", sql_print_information("Crashing crash_after_commit_and_update_pos."); flush_info(TRUE); DBUG_SUICIDE(); ); } ptr_g->group_master_log_pos= group_master_log_pos; ptr_g->group_relay_log_pos= group_relay_log_pos; ptr_g->done= 1; // GAQ index is available to C now last_group_done_index= gaq_index; last_groups_assigned_index= ptr_g->total_seqno; reset_gaq_index(); groups_done++; } else { bool silent = false; int err = found_order_commit_deadlock() ? ER_LOCK_DEADLOCK : 0; if (has_temporary_error(info_thd, err, &silent) && trans_retries < slave_trans_retries) { if (last_current_event_index < current_event_index) last_current_event_index = current_event_index; // Retry the transaction in case of a temporary error by // rewinding the current_event_index to the start of the group. current_event_index = 0; // Store the number of times the current group is retried. trans_retries++; error = 0; // Reset the error to avoid worker thread reporting an error. temporary_error = true; cleanup_context(info_thd, 1); // slightly more sleep when commit order deadlock is found so that the // earlier trx can race forward ulong sleep_sec= found_order_commit_deadlock() ? trans_retries + 1 : trans_retries; sleep_sec= min<ulong>(sleep_sec, MAX_SLAVE_RETRY_PAUSE); reset_order_commit_deadlock(); worker_sleep(sleep_sec); DBUG_VOID_RETURN; } else if (running_status != STOP_ACCEPTED) { // tagging as exiting so Coordinator won't be able synchronize with it mysql_mutex_lock(&jobs_lock); running_status= ERROR_LEAVING; mysql_mutex_unlock(&jobs_lock); // Killing Coordinator to indicate eventual consistency error mysql_mutex_lock(&c_rli->info_thd->LOCK_thd_data); c_rli->info_thd->awake(THD::KILL_QUERY); mysql_mutex_unlock(&c_rli->info_thd->LOCK_thd_data); } } /* Cleanup relating to the last executed group regardless of error. */ DYNAMIC_ARRAY *ep= &curr_group_exec_parts; for (uint i= 0; i < ep->elements; i++) { db_worker_hash_entry *entry= *((db_worker_hash_entry **) dynamic_array_ptr(ep, i)); mysql_mutex_lock(&slave_worker_hash_lock); DBUG_ASSERT(entry); entry->usage --; DBUG_ASSERT(entry->usage >= 0); if (entry->usage == 0) { usage_partition--; /* The detached entry's temp table list, possibly updated, remains with the entry at least until time Coordinator will deallocate it from the hash, that is either due to stop or extra size of the hash. */ DBUG_ASSERT(usage_partition >= 0); DBUG_ASSERT(this->info_thd->temporary_tables == 0); DBUG_ASSERT(!entry->temporary_tables || !entry->temporary_tables->prev); if (entry->worker != this) // Coordinator is waiting { #ifndef DBUG_OFF // TODO: open it! DBUG_ASSERT(usage_partition || !entry->worker->jobs.len); #endif DBUG_PRINT("info", ("Notifying entry %p release by worker %lu", entry, this->id)); mysql_cond_signal(&slave_worker_hash_cond); } } else DBUG_ASSERT(usage_partition != 0); mysql_mutex_unlock(&slave_worker_hash_lock); } if (ep->elements > ep->max_element) { // reallocate to lessen mem ep->elements= ep->max_element; ep->max_element= 0; freeze_size(ep); // restores max_element } ep->elements= 0; if (error) { // Awakening Coordinator that could be waiting for entry release mysql_mutex_lock(&slave_worker_hash_lock); mysql_cond_signal(&slave_worker_hash_cond); mysql_mutex_unlock(&slave_worker_hash_lock); } DBUG_VOID_RETURN; } /** Class circular_buffer_queue. Content of the being dequeued item is copied to the arg-pointer location. @return the queue's array index that the de-queued item located at, or an error as an int outside the legacy [0, size) (value `size' is excluded) range. */ ulong circular_buffer_queue::de_queue(uchar *val) { ulong ret; if (entry == size) { DBUG_ASSERT(len == 0); return (ulong) -1; } ret= entry; get_dynamic(&Q, val, entry); len--; // pre boundary cond if (avail == size) avail= entry; entry= (entry + 1) % size; // post boundary cond if (avail == entry) entry= size; DBUG_ASSERT(entry == size || (len == (avail >= entry)? (avail - entry) : (size + avail - entry))); DBUG_ASSERT(avail != entry); return ret; } /** Similar to de_queue() but removing an item from the tail side. return the queue's array index that the de-queued item located at, or an error. */ ulong circular_buffer_queue::de_tail(uchar *val) { if (entry == size) { DBUG_ASSERT(len == 0); return (ulong) -1; } avail= (entry + len - 1) % size; get_dynamic(&Q, val, avail); len--; // post boundary cond if (avail == entry) entry= size; DBUG_ASSERT(entry == size || (len == (avail >= entry)? (avail - entry) : (size + avail - entry))); DBUG_ASSERT(avail != entry); return avail; } /** @return the index where the arg item has been located or an error. */ ulong circular_buffer_queue::en_queue(void *item) { ulong ret; if (avail == size) { DBUG_ASSERT(avail == Q.elements); return (ulong) -1; } // store ret= avail; set_dynamic(&Q, (uchar*) item, avail); // pre-boundary cond if (entry == size) entry= avail; avail= (avail + 1) % size; len++; // post-boundary cond if (avail == entry) avail= size; DBUG_ASSERT(avail == entry || len == (avail >= entry) ? (avail - entry) : (size + avail - entry)); DBUG_ASSERT(avail != entry); return ret; } void* circular_buffer_queue::head_queue() { uchar *ret= NULL; if (entry == size) { DBUG_ASSERT(len == 0); } else { get_dynamic(&Q, (uchar*) ret, entry); } return (void*) ret; } /** two index comparision to determine which of the two is ordered first. @note The caller makes sure the args are within the valid range, incl cases the queue is empty or full. @return TRUE if the first arg identifies a queue entity ordered after one defined by the 2nd arg, FALSE otherwise. */ bool circular_buffer_queue::gt(ulong i, ulong k) { DBUG_ASSERT(i < size && k < size); DBUG_ASSERT(avail != entry); if (i >= entry) if (k >= entry) return i > k; else return FALSE; else if (k >= entry) return TRUE; else return i > k; } #ifndef DBUG_OFF bool Slave_committed_queue::count_done(Relay_log_info* rli) { ulong i, k, cnt= 0; for (i= entry, k= 0; k < len; i= (i + 1) % size, k++) { Slave_job_group *ptr_g; ptr_g= (Slave_job_group *) dynamic_array_ptr(&Q, i); if (ptr_g->worker_id != (ulong) -1 && ptr_g->done) cnt++; } DBUG_ASSERT(cnt <= size); DBUG_PRINT("mts", ("Checking if it can simulate a crash:" " mts_checkpoint_group %u counter %lu parallel slaves %lu\n", opt_mts_checkpoint_group, cnt, rli->slave_parallel_workers)); return (cnt == (rli->slave_parallel_workers * opt_mts_checkpoint_group)); } #endif /** The queue is processed from the head item by item to purge items representing committed groups. Progress in GAQ is assessed through comparision of GAQ index value with Worker's @c last_group_done_index. Purging breaks at a first discovered gap, that is an item that the assinged item->w_id'th Worker has not yet completed. The caller is supposed to be the checkpoint handler. A copy of the last discarded item containing the refreshed value of the committed low-water-mark is stored into @c lwm container member for further caller's processing. @c last_done is updated with the latest total_seqno for each Worker that was met during GAQ parse. @note dyn-allocated members of Slave_job_group such as group_relay_log_name as freed here. @return number of discarded items */ ulong Slave_committed_queue::move_queue_head(DYNAMIC_ARRAY *ws) { ulong i, cnt= 0; for (i= entry; i != avail && !empty(); cnt++, i= (i + 1) % size) { Slave_worker *w_i; Slave_job_group *ptr_g, g; char grl_name[FN_REFLEN]; ulong ind MY_ATTRIBUTE((unused)); #ifndef DBUG_OFF if (DBUG_EVALUATE_IF("check_slave_debug_group", 1, 0) && cnt == opt_mts_checkpoint_period) return cnt; #endif grl_name[0]= 0; ptr_g= (Slave_job_group *) dynamic_array_ptr(&Q, i); /* The current job has not been processed or it was not even assigned, this means there is a gap. */ if (ptr_g->worker_id == MTS_WORKER_UNDEF || !ptr_g->done) break; /* gap at i'th */ /* Worker-id domain guard */ compile_time_assert(MTS_WORKER_UNDEF > MTS_MAX_WORKERS); get_dynamic(ws, (uchar *) &w_i, ptr_g->worker_id); /* Memorizes the latest valid group_relay_log_name. */ if (ptr_g->group_relay_log_name) { strcpy(grl_name, ptr_g->group_relay_log_name); my_free(ptr_g->group_relay_log_name); /* It is important to mark the field as freed. */ ptr_g->group_relay_log_name= NULL; } /* Removes the job from the (G)lobal (A)ssigned (Q)ueue. */ ind= de_queue((uchar*) &g); /* Stores the memorized name into the result struct. Note that we take care of the pointer first and then copy the other elements by assigning the structures. */ if (grl_name[0] != 0) { strcpy(lwm.group_relay_log_name, grl_name); } g.group_relay_log_name= lwm.group_relay_log_name; lwm= g; DBUG_ASSERT(ind == i); DBUG_ASSERT(!ptr_g->group_relay_log_name); DBUG_ASSERT(ptr_g->total_seqno == lwm.total_seqno); #ifndef DBUG_OFF { ulonglong l; get_dynamic(&last_done, (uchar *) &l, w_i->id); /* There must be some progress otherwise we should have exit the loop earlier. */ DBUG_ASSERT(l < ptr_g->total_seqno); } #endif /* This is used to calculate the last time each worker has processed events. */ set_dynamic(&last_done, &ptr_g->total_seqno, w_i->id); } DBUG_ASSERT(cnt <= size); return cnt; } /** Method should be executed at slave system stop to cleanup dynamically allocated items that remained as unprocessed by Coordinator and Workers in their regular execution course. */ void Slave_committed_queue::free_dynamic_items() { ulong i, k; for (i= entry, k= 0; k < len; i= (i + 1) % size, k++) { Slave_job_group *ptr_g= (Slave_job_group *) dynamic_array_ptr(&Q, i); if (ptr_g->group_relay_log_name) { my_free(ptr_g->group_relay_log_name); } if (ptr_g->checkpoint_log_name) { my_free(ptr_g->checkpoint_log_name); } if (ptr_g->checkpoint_relay_log_name) { my_free(ptr_g->checkpoint_relay_log_name); } if (ptr_g->group_master_log_name) { my_free(ptr_g->group_master_log_name); } } DBUG_ASSERT((avail == size /* full */ || entry == size /* empty */) || i == avail /* all occupied are processed */); } void Slave_worker::do_report(loglevel level, int err_code, const char *msg, va_list args) const { char buff_coord[MAX_SLAVE_ERRMSG]; char buff_gtid[Gtid::MAX_TEXT_LENGTH + 1]; const char* log_name= const_cast<Slave_worker*>(this)->get_master_log_name(); ulonglong log_pos= const_cast<Slave_worker*>(this)->get_master_log_pos(); const Gtid_specification *gtid_next= &info_thd->variables.gtid_next; if (gtid_next->type == GTID_GROUP) { global_sid_lock->rdlock(); gtid_next->to_string(global_sid_map, buff_gtid); global_sid_lock->unlock(); } else { buff_gtid[0]= 0; } my_snprintf(buff_coord, sizeof(buff_coord), "Worker %lu failed executing transaction '%s' at " "master log %s, end_log_pos %llu", id, buff_gtid, log_name, log_pos); c_rli->va_report(level, err_code, buff_coord, msg, args); } /** * Wait for all dependency slave workers to finish working on all enqueued trxs * * @param rli Relay log info of the coordinator thread * @param partial_trx Have we queued a partial transaction? * If true, we can't blindly wait for the trx counter to be * zero (since the worker will not be able to complete * that transaction) * @return bool true if all is well, false otherwise */ bool wait_for_dep_workers_to_finish(Relay_log_info *rli, bool partial_trx) { DBUG_ASSERT(rli->mts_dependency_replication); PSI_stage_info old_stage; // This simulates `STOP SLAVE` command racing with SQL thread error handling // by setting the killed flag to NOT_KILLED. See @terminate_slave_thread() DBUG_EXECUTE_IF("simulate_stop_slave_before_dep_worker_wait", { rli->info_thd->killed = THD::NOT_KILLED; };); mysql_mutex_lock(&rli->dep_lock); const ulonglong num= partial_trx ? 1 : 0; rli->info_thd->ENTER_COND(&rli->dep_trx_all_done_cond, &rli->dep_lock, &stage_slave_waiting_for_dependency_workers, &old_stage); while (rli->num_in_flight_trx > num && !rli->info_thd->killed && !rli->dependency_worker_error) { const auto timeout_nsec= rli->mts_dependency_cond_wait_timeout * 1000000; struct timespec abstime; set_timespec_nsec(abstime, timeout_nsec); mysql_cond_timedwait(&rli->dep_trx_all_done_cond, &rli->dep_lock, &abstime); } rli->info_thd->EXIT_COND(&old_stage); return !rli->info_thd->killed; } /** Function is called by Coordinator when it identified an event requiring sequential execution. Creating sequential context for the event includes waiting for the assigned to Workers tasks to be completed and their resources such as temporary tables be returned to Coordinator's repository. In case all workers are waited Coordinator changes its group status. @param rli Relay_log_info instance of Coordinator @param ignore Optional Worker instance pointer if the sequential context is established due for the ignore Worker. Its resources are to be retained. @note Resources that are not occupied by Workers such as a list of temporary tables held in unused (zero-usage) records of APH are relocated to the Coordinator placeholder. @return non-negative number of released by Workers partitions (one partition by one Worker can count multiple times) or -1 to indicate there has been a failure on a not-ignored Worker as indicated by its running_status so synchronization can't succeed. */ int wait_for_workers_to_finish(Relay_log_info *rli, Slave_worker *ignore) { uint ret= 0; HASH *hash= &mapping_db_to_worker; THD *thd= rli->info_thd; bool cant_sync= FALSE; char llbuf[22]; DBUG_ENTER("wait_for_workers_to_finish"); llstr(const_cast<Relay_log_info*>(rli)->get_event_relay_log_pos(), llbuf); if (log_warnings > 1) sql_print_information("Coordinator and workers enter synchronization procedure " "when scheduling event relay-log: %s pos: %s", const_cast<Relay_log_info*>(rli)->get_event_relay_log_name(), llbuf); if (rli->mts_dependency_replication) { DBUG_ASSERT(ignore == NULL); if (!wait_for_dep_workers_to_finish(rli, false)) DBUG_RETURN(-1); } else { for (uint i= 0, ret= 0; i < hash->records; i++) { db_worker_hash_entry *entry; mysql_mutex_lock(&slave_worker_hash_lock); entry= (db_worker_hash_entry*) my_hash_element(hash, i); DBUG_ASSERT(entry); // the ignore Worker retains its active resources if (ignore && entry->worker == ignore && entry->usage > 0) { mysql_mutex_unlock(&slave_worker_hash_lock); continue; } if (entry->usage > 0 && !thd->killed) { PSI_stage_info old_stage; Slave_worker *w_entry= entry->worker; entry->worker= NULL; // mark Worker to signal when usage drops to 0 thd->ENTER_COND(&slave_worker_hash_cond, &slave_worker_hash_lock, &stage_slave_waiting_worker_to_release_partition, &old_stage); do { mysql_cond_wait(&slave_worker_hash_cond, &slave_worker_hash_lock); DBUG_PRINT("info", ("Either got awakened of notified: " "entry %p, usage %lu, worker %lu", entry, entry->usage, w_entry->id)); } while (entry->usage != 0 && !thd->killed); // restoring last association, needed only for assert entry->worker= w_entry; thd->EXIT_COND(&old_stage); ret++; } else { mysql_mutex_unlock(&slave_worker_hash_lock); } // resources relocation mts_move_temp_tables_to_thd(thd, entry->temporary_tables); entry->temporary_tables= NULL; if (entry->worker->running_status != Slave_worker::RUNNING) cant_sync= TRUE; } } if (!ignore) { if (log_warnings > 1) sql_print_information("Coordinator synchronized with Workers, " "waited entries: %d, cant_sync: %d", ret, cant_sync); const_cast<Relay_log_info*>(rli)->mts_group_status= Relay_log_info::MTS_NOT_IN_GROUP; } DBUG_RETURN(!cant_sync ? ret : -1); } // returns the next available! (TODO: incompatible to circurla_buff method!!!) static int en_queue(Slave_jobs_queue *jobs, Slave_job_item *item) { if (jobs->avail == jobs->size) { DBUG_ASSERT(jobs->avail == jobs->Q.elements); return -1; } // store set_dynamic(&jobs->Q, (uchar*) item, jobs->avail); // pre-boundary cond if (jobs->entry == jobs->size) jobs->entry= jobs->avail; jobs->avail= (jobs->avail + 1) % jobs->size; jobs->len++; // post-boundary cond if (jobs->avail == jobs->entry) jobs->avail= jobs->size; DBUG_ASSERT(jobs->avail == jobs->entry || jobs->len == (jobs->avail >= jobs->entry) ? (jobs->avail - jobs->entry) : (jobs->size + jobs->avail - jobs->entry)); return jobs->avail; } /** return the value of @c data member of the element at location index starting from the head of the queue. */ void * head_queue(Slave_jobs_queue *jobs, Slave_job_item *ret, ulong index) { if (jobs->entry == jobs->size) { DBUG_ASSERT(jobs->len == 0); ret->data= NULL; // todo: move to caller return NULL; } // Avoid index overflowing more than queue length. if (index >= jobs->len) { ret->data = NULL; return NULL; } get_dynamic(&jobs->Q, (uchar*) ret, (jobs->entry + index) % jobs->size); DBUG_ASSERT(ret->data); // todo: move to caller return ret; } /** return a job item through a struct which point is supplied via argument. */ Slave_job_item * de_queue(Slave_jobs_queue *jobs, Slave_job_item *ret) { if (jobs->entry == jobs->size) { DBUG_ASSERT(jobs->len == 0); return NULL; } get_dynamic(&jobs->Q, (uchar*) ret, jobs->entry); jobs->len--; // pre boundary cond if (jobs->avail == jobs->size) jobs->avail= jobs->entry; jobs->entry= (jobs->entry + 1) % jobs->size; // post boundary cond if (jobs->avail == jobs->entry) jobs->entry= jobs->size; DBUG_ASSERT(jobs->entry == jobs->size || (jobs->len == (jobs->avail >= jobs->entry) ? (jobs->avail - jobs->entry) : (jobs->size + jobs->avail - jobs->entry))); return ret; } /** Coordinator enqueues a job item into a Worker private queue. @param job_item a pointer to struct carrying a reference to an event @param worker a pointer to the assigned Worker struct @param rli a pointer to Relay_log_info of Coordinator @return false Success. true Thread killed or worker stopped while waiting for successful enqueue. */ bool append_item_to_jobs(slave_job_item *job_item, Slave_worker *worker, Relay_log_info *rli) { THD *thd= rli->info_thd; int ret= -1; ulong ev_size= ((Log_event*) (job_item->data))->data_written; ulonglong new_pend_size; PSI_stage_info old_stage; DBUG_ASSERT(rli->mts_dependency_replication || thd == current_thd); if (ev_size > rli->mts_pending_jobs_size_max) { char llbuff[22]; llstr(rli->get_event_relay_log_pos(), llbuff); my_error(ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX, MYF(0), ((Log_event*) (job_item->data))->get_type_str(), rli->get_event_relay_log_name(), llbuff, ev_size, rli->mts_pending_jobs_size_max); /* Waiting in slave_stop_workers() avoidance */ rli->mts_group_status= Relay_log_info::MTS_KILLED_GROUP; return ret; } mysql_mutex_lock(&rli->pending_jobs_lock); new_pend_size= rli->mts_pending_jobs_size + ev_size; // C waits basing on *data* sizes in the queues while (new_pend_size > rli->mts_pending_jobs_size_max) { rli->mts_wq_oversize= TRUE; rli->wq_size_waits_cnt++; // waiting due to the total size thd->ENTER_COND(&rli->pending_jobs_cond, &rli->pending_jobs_lock, &stage_slave_waiting_worker_to_free_events, &old_stage); mysql_cond_wait(&rli->pending_jobs_cond, &rli->pending_jobs_lock); thd->EXIT_COND(&old_stage); if (thd->killed) return true; if (log_warnings > 1 && (rli->wq_size_waits_cnt % 10 == 1)) sql_print_information("Multi-threaded slave: Coordinator has waited " "%lu times hitting slave_pending_jobs_size_max; " "current event size = %lu.", rli->wq_size_waits_cnt, ev_size); mysql_mutex_lock(&rli->pending_jobs_lock); new_pend_size= rli->mts_pending_jobs_size + ev_size; } rli->pending_jobs++; rli->mts_pending_jobs_size= new_pend_size; rli->mts_events_assigned++; mysql_mutex_unlock(&rli->pending_jobs_lock); /* Sleep unless there is an underrunning Worker and the current Worker queue is empty or filled lightly (not more than underrun level). */ if (rli->mts_wq_underrun_w_id == MTS_WORKER_UNDEF && worker->jobs.len > worker->underrun_level) { /* todo: experiment with weight to get a good approximation formula. Max possible nap time is choosen 1 ms. The bigger the excessive overrun counter the longer the nap. */ ulong nap_weight= rli->mts_wq_excess_cnt + 1; /* Nap time is a product of a weight factor and the basic nap unit. The weight factor is proportional to the worker queues overrun excess counter. For example when there were only one overruning Worker the max nap_weight as 0.1 * worker->jobs.size would be about 1600 so the max nap time is approx 0.008 secs. Such value is not reachable because of min(). Notice, granularity of sleep depends on the resolution of the software clock, High-Resolution Timer (HRT) configuration. Without HRT the precision of wake-up through @c select() may be greater or equal 1 ms. So don't expect the nap last a prescribed fraction of 1 ms in such case. Sleep only if this flow control is enabled through system variable rpl_slave_flow_control */ if (rpl_slave_flow_control) { my_sleep(min<ulong>(1000, nap_weight * rli->mts_coordinator_basic_nap)); } rli->mts_wq_no_underrun_cnt++; } mysql_mutex_lock(&worker->jobs_lock); // possible WQ overfill while (worker->running_status == Slave_worker::RUNNING && !thd->killed && (ret= en_queue(&worker->jobs, job_item)) == -1) { thd->ENTER_COND(&worker->jobs_cond, &worker->jobs_lock, &stage_slave_waiting_worker_queue, &old_stage); worker->jobs.overfill= TRUE; worker->jobs.waited_overfill++; rli->mts_wq_overfill_cnt++; mysql_cond_wait(&worker->jobs_cond, &worker->jobs_lock); thd->EXIT_COND(&old_stage); mysql_mutex_lock(&worker->jobs_lock); } if (ret != -1) { worker->curr_jobs++; mysql_cond_signal(&worker->jobs_cond); mysql_mutex_unlock(&worker->jobs_lock); } else { mysql_mutex_unlock(&worker->jobs_lock); mysql_mutex_lock(&rli->pending_jobs_lock); rli->pending_jobs--; // roll back of the prev incr rli->mts_pending_jobs_size -= ev_size; mysql_mutex_unlock(&rli->pending_jobs_lock); } return (-1 != ret ? false : true); } /* Updates pending_jobs size and signals the coordinator if it is waiting for some memory release by workers. @param rli Relay log info of the coordinator thread @param ev Current executed event */ static void slave_worker_update_pending_events(Relay_log_info *rli, Log_event *ev) { DBUG_ASSERT(ev); mysql_mutex_lock(&rli->pending_jobs_lock); rli->pending_jobs--; rli->mts_pending_jobs_size -= ev->data_written; DBUG_ASSERT(rli->mts_pending_jobs_size < rli->mts_pending_jobs_size_max); /* coordinator can be waiting */ if (rli->mts_pending_jobs_size < rli->mts_pending_jobs_size_max && rli->mts_wq_oversize) // TODO: unit/general test wq_oversize { rli->mts_wq_oversize= FALSE; mysql_cond_signal(&rli->pending_jobs_cond); } mysql_mutex_unlock(&rli->pending_jobs_lock); } /* Dequeues event from the slave worker queue. Handles edge cases where signal needs to be given for waiting coordinator thread. @param worker Pointer to the worker thread @param rli Relay log info of the coordinator thread jobs_lock should be acquired by the caller. */ static void slave_worker_update_statistics(Slave_worker *worker, Relay_log_info *rli) { mysql_mutex_assert_owner(&worker->jobs_lock); struct slave_job_item item= {NULL}, *job_item= &item; Log_event *ev= NULL; de_queue(&worker->jobs, job_item); ev= static_cast<Log_event*>(job_item->data); /* possible overfill */ if (worker->jobs.len == worker->jobs.size - 1 && worker->jobs.overfill == TRUE) { worker->jobs.overfill= FALSE; // todo: worker->hungry_cnt++; mysql_cond_signal(&worker->jobs_cond); } /* statistics */ /* The positive branch is underrun: number of pending assignments is less than underrun level. Zero of jobs.len has to reset underrun w_id as the worker may get the next piece of assignement in a long time. */ if (worker->underrun_level > worker->jobs.len && worker->jobs.len != 0) { rli->mts_wq_underrun_w_id= worker->id; } else if (rli->mts_wq_underrun_w_id == worker->id) { // reset only own marking rli->mts_wq_underrun_w_id= MTS_WORKER_UNDEF; } /* Overrun handling. Incrementing the Worker private and the total excess counter corresponding to number of events filled above the overrun_level. The increment amount to the total counter is a difference between the current and the previous private excess (worker->wq_overrun_cnt). When the current queue length drops below overrun_level the global counter is decremented, the local is reset. */ if (worker->overrun_level < worker->jobs.len) { ulong last_overrun= worker->wq_overrun_cnt; ulong excess_delta; /* current overrun */ worker->wq_overrun_cnt= worker->jobs.len - worker->overrun_level; excess_delta= worker->wq_overrun_cnt - last_overrun; worker->excess_cnt+= excess_delta; rli->mts_wq_excess_cnt+= excess_delta; rli->mts_wq_overrun_cnt++; // statistics // guarding correctness of incrementing in case of the only one Worker DBUG_ASSERT(rli->workers.elements != 1 || rli->mts_wq_excess_cnt == worker->wq_overrun_cnt); } else if (worker->excess_cnt > 0) { // When level drops below the total excess is decremented by the // value of the worker's contribution to the total excess. rli->mts_wq_excess_cnt-= worker->excess_cnt; worker->excess_cnt= 0; worker->wq_overrun_cnt= 0; // and the local is reset DBUG_ASSERT(rli->mts_wq_excess_cnt >= 0); DBUG_ASSERT(rli->mts_wq_excess_cnt == 0 || rli->workers.elements > 1); } if (ev && ev->worker) { delete ev; } } /* Dequeues all the events in current transaction from the slave worker queue. @param worker Pointer to the worker thread @param rli Relay log info of the coordinator thread @param overfill true, if we need to dequeue all the executed events in current transaction which has not yet committed. jobs_lock and pending_jobs_lock should be acquired by the caller. */ void clear_current_group_events(Slave_worker *worker, Relay_log_info *rli, bool overfill) { mysql_mutex_assert_owner(&worker->jobs_lock); for (ulong i = 0; i < worker->current_event_index; i++) slave_worker_update_statistics(worker, rli); worker->current_event_index = 0; worker->last_current_event_index = 0; if (overfill) worker->trans_retries = ULONG_MAX; else worker->trans_retries = 0; DBUG_EXECUTE_IF("after_clear_current_group_events", { const char act[]= "now signal clear.reached wait_for clear.done"; DBUG_ASSERT(opt_debug_sync_timeout > 0); DBUG_ASSERT(!debug_sync_set_action(worker->info_thd, STRING_WITH_LEN(act))); };); } /** Worker's routine to wait for a new assignement through @c append_item_to_jobs() @param worker a pointer to the waiting Worker struct @param job_item a pointer to struct carrying a reference to an event @param index index of the event starting from the head of the queue @return NULL failure or a-pointer to an item. If current group causes worker queue overfill, current_event_index will get reset to 0. */ struct slave_job_item* pop_jobs_item(Slave_worker *worker, Slave_job_item *job_item) { THD *thd= worker->info_thd; mysql_mutex_lock(&worker->jobs_lock); while (!job_item->data && !thd->killed && (worker->running_status == Slave_worker::RUNNING || worker->running_status == Slave_worker::STOP)) { PSI_stage_info old_stage; if (set_max_updated_index_on_stop(worker, job_item, worker->current_event_index)) break; if (job_item->data == NULL) { if (worker->current_event_index == worker->jobs.size) { // Resets worker->current_event_index to 0. clear_current_group_events(worker, worker->c_rli, true); } worker->wq_empty_waits++; thd->ENTER_COND(&worker->jobs_cond, &worker->jobs_lock, &stage_slave_waiting_event_from_coordinator, &old_stage); mysql_cond_wait(&worker->jobs_cond, &worker->jobs_lock); thd->EXIT_COND(&old_stage); mysql_mutex_lock(&worker->jobs_lock); } } if (job_item->data) worker->curr_jobs--; mysql_mutex_unlock(&worker->jobs_lock); thd_proc_info(worker->info_thd, "Executing event"); return job_item; } /** MTS worker main routine. The worker thread loops in waiting for an event, executing it and fixing statistics counters. @param worker a pointer to the assigned Worker struct @param rli a pointer to Relay_log_info of Coordinator to update statistics. @note the function maintains worker's CGEP and modifies APH, updates the current group item in GAQ via @c slave_worker_ends_group(). @return 0 success -1 got killed or an error happened during appying */ int slave_worker_exec_job(Slave_worker *worker, Relay_log_info *rli) { int error= 0; bool skip_event = false; struct slave_job_item item= {NULL}, *job_item= &item; THD *thd= worker->info_thd; Log_event *ev= NULL; bool part_event= FALSE; bool end_event = false; bool temporary_error = false; DBUG_ENTER("slave_worker_exec_job"); job_item= pop_jobs_item(worker, job_item); if (thd->killed || worker->running_status == Slave_worker::STOP_ACCEPTED) { DBUG_ASSERT(worker->running_status != Slave_worker::ERROR_LEAVING); // de-queueing and decrement counters is in the caller's exit branch error= -1; goto err; } if (worker->found_order_commit_deadlock()) { error= ER_LOCK_DEADLOCK; goto err; } worker->current_event_index++; ev= static_cast<Log_event*>(job_item->data); if (rli->mts_dependency_replication) { Slave_job_group *ptr_g= rli->gaq->get_job_group(ev->mts_group_idx); ptr_g->worker= worker; ptr_g->worker_id= worker->id; ptr_g->shifted= worker->bitmap_shifted; worker->bitmap_shifted= 0; } thd->server_id = ev->server_id; thd->set_time(); thd->lex->current_select= 0; if (!ev->when.tv_sec) ev->when.tv_sec= my_time(0); ev->thd= thd; // todo: assert because up to this point, ev->thd == 0 ev->worker= worker; DBUG_PRINT("slave_worker_exec_job:", ("W_%lu <- job item: %p data: %p thd: %p", worker->id, job_item, ev, thd)); part_event= ev->contains_partition_info(worker->end_group_sets_max_dbs); if (ev->starts_group()) { worker->curr_group_seen_begin= true; // The current group is started with B-event worker->end_group_sets_max_dbs= true; } else if (!is_gtid_event(ev)) { if (part_event) { if (!rli->mts_dependency_replication) { uint num_dbs= ev->mts_number_dbs(); DYNAMIC_ARRAY *ep= &worker->curr_group_exec_parts; if (num_dbs == OVER_MAX_DBS_IN_EVENT_MTS) num_dbs= 1; DBUG_ASSERT(num_dbs > 0); for (uint k= 0; k < num_dbs; k++) { bool found= FALSE; for (uint i= 0; i < ep->elements && !found; i++) { found= *((db_worker_hash_entry **) dynamic_array_ptr(ep, i)) == ev->mts_assigned_partitions[k]; } if (!found) { /* notice, can't assert DBUG_ASSERT(ev->mts_assigned_partitions[k]->worker == worker); since entry could be marked as wanted by other worker. */ insert_dynamic(ep, (uchar*) &ev->mts_assigned_partitions[k]); } } } worker->end_group_sets_max_dbs= false; } } my_io_perf_t start_perf_read, start_perf_read_blob; my_io_perf_t start_perf_read_primary, start_perf_read_secondary; ulonglong init_timer, wall_time; bool is_other, is_xid, update_slave_stats; /* Initialize for user_statistics, see dispatch_command */ thd->reset_user_stats_counters(); start_perf_read = thd->io_perf_read; start_perf_read_blob = thd->io_perf_read_blob; start_perf_read_primary = thd->io_perf_read_primary; start_perf_read_secondary = thd->io_perf_read_secondary; init_timer = my_timer_now(); worker->set_future_event_relay_log_pos(ev->future_event_relay_log_pos); worker->set_master_log_pos(ev->log_pos); worker->set_gaq_index(ev->mts_group_idx); if (gtid_mode > 0 && !thd->is_enabled_idempotent_recovery() && ev->contains_partition_info(false)) { Mts_db_names mts_dbs; // Comments on handling of OVER_MAX_DBS_IN_EVENT_MTS is in // Log_event::apply_event if (ev->mts_dbs(&mts_dbs) == OVER_MAX_DBS_IN_EVENT_MTS) { mts_dbs.num = 1; mts_dbs.name[0] = ev->get_db(); } for (int i = 0; i < mts_dbs.num; ++i) { Gtid_info *gtid_info = NULL; const char *db_name = mts_dbs.name[i]; if (!strcmp(db_name, "")) continue; worker->c_rli->gtid_info_hash_rdlock(); gtid_info = (Gtid_info *)my_hash_search(&rli->map_db_to_gtid_info, (uchar*) db_name, strlen(db_name)); worker->c_rli->gtid_info_hash_unlock(); DBUG_ASSERT(gtid_info); if ((skip_event = gtid_info->skip_event(worker->worker_last_gtid))) { // data_written is modified when the event is written to binlog. // This is a work around to avoid assertions due to modified // data_written value. ulong old_data_written = ev->data_written; ev->reset_log_pos(); if (!worker->curr_group_seen_begin) { ev->apply_query_event((char *)"BEGIN", 5); mysql_bin_log.write_event(ev, Log_event::EVENT_STMT_CACHE); ev->apply_query_event((char *)"COMMIT", 6); } else if (ev->get_type_code() != TABLE_MAP_EVENT) { mysql_bin_log.write_event(ev, Log_event::EVENT_TRANSACTIONAL_CACHE); trans_commit_stmt(thd); } ev->data_written = old_data_written; reset_dynamic(&worker->worker_gtid_infos); break; } // Memotize the gtid_info repository which should be flushed in // commit_positions. insert_dynamic_set(&worker->worker_gtid_infos, (uchar *) &gtid_info); } } if (ev->is_row_log_event() && !thd->is_enabled_idempotent_recovery()) { Rows_log_event *row_ev = (Rows_log_event *) ev; if (!worker->worker_gtid_infos.elements && gtid_mode > 0) row_ev->m_binlog_only = TRUE; } DBUG_EXECUTE_IF("dbg_enable_idempotent_recovery", { if (ev->is_row_log_event()) { Gtid current_gtid; rli->recovery_sid_lock->rdlock(); current_gtid.parse(rli->recovery_sid_map, worker->worker_last_gtid); rli->recovery_sid_lock->unlock(); rli->recovery_max_engine_gtid= current_gtid; } }); // Check if idempotent mode is required (used after crash recovery) if (ev->is_row_log_event() && worker->worker_last_gtid[0] && thd->is_enabled_idempotent_recovery() && !rli->recovery_max_engine_gtid.empty()) { Gtid current_gtid; rli->recovery_sid_lock->rdlock(); current_gtid.parse(rli->recovery_sid_map, worker->worker_last_gtid); rli->recovery_sid_lock->unlock(); if (current_gtid.sidno == rli->recovery_max_engine_gtid.sidno && current_gtid.gno <= rli->recovery_max_engine_gtid.gno) { sql_print_information("Enabling idempotent mode for %s", worker->worker_last_gtid); ev->slave_exec_mode= SLAVE_EXEC_MODE_IDEMPOTENT; ((Rows_log_event*)ev)->m_force_binlog_idempotent= TRUE; thd->m_skip_row_logging_functions= true; } } thd->print_proc_info("Executing %s event at position %lu", ev->get_type_str(), ev->log_pos); // Table map events are required for row log events even if // the current transaction needs to be skipped in storage engine. // Table map events don't modify any data, so this event is safe to apply // multiple times. if (!skip_event || ev->get_type_code() == TABLE_MAP_EVENT) error= ev->do_apply_event_worker(worker); DBUG_EXECUTE_IF("after_executed_write_rows_event", { if (ev->get_type_code() == WRITE_ROWS_EVENT) { const char act[]= "now signal executed"; DBUG_ASSERT(opt_debug_sync_timeout > 0); DBUG_ASSERT(!debug_sync_set_action(thd, STRING_WITH_LEN(act))); } };); if (is_gtid_event(ev)) { reset_dynamic(&worker->worker_gtid_infos); Gtid_log_event *gtid_ev = (Gtid_log_event *) ev; gtid_ev->set_last_gtid(worker->worker_last_gtid); } if (ev->ends_group() || (!worker->curr_group_seen_begin && /* p-events of B/T-less {p,g} group (see legends of Log_event::get_slave_worker) obviously can't commit. */ part_event && !is_gtid_event(ev))) { DBUG_PRINT("slave_worker_exec_job:", (" commits GAQ index %lu, last committed %lu", ev->mts_group_idx, worker->last_group_done_index)); end_event = true; // last done sets post exec worker->slave_worker_ends_group(ev, error, temporary_error); #ifndef DBUG_OFF DBUG_PRINT("mts", ("Check_slave_debug_group worker %lu mts_checkpoint_group" " %u processed %lu debug %d\n", worker->id, opt_mts_checkpoint_group, worker->groups_done, DBUG_EVALUATE_IF("check_slave_debug_group", 1, 0))); if (DBUG_EVALUATE_IF("check_slave_debug_group", 1, 0) && opt_mts_checkpoint_group == worker->groups_done) { DBUG_PRINT("mts", ("Putting worker %lu in busy wait.", worker->id)); while (true) my_sleep(6000000); } #endif } wall_time = my_timer_since(init_timer); /* Update counters for USER_STATS */ is_other= FALSE; is_xid= FALSE; update_slave_stats= FALSE; if (ev->get_type_code() < ENUM_END_EVENT) { repl_event_counts[ev->get_type_code()] += 1; repl_event_times[ev->get_type_code()] += wall_time; } else { repl_event_count_other += 1; repl_event_time_other += wall_time; } /* TODO: handle WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, DELETE_ROWS_EVENT */ switch (ev->get_type_code()) { case XID_EVENT: is_xid= TRUE; update_slave_stats= TRUE; break; case QUERY_EVENT: update_slave_stats= TRUE; break; default: break; } if (update_slave_stats) { if (error == 0 && !temporary_error) { rli->update_peak_lag(ev->when.tv_sec); } USER_STATS *us= thd_get_user_stats(thd); update_user_stats_after_statement(us, thd, wall_time, is_other, is_xid, &start_perf_read, &start_perf_read_blob, &start_perf_read_primary, &start_perf_read_secondary); } // While retrying a transaction statistics related to pending events // should not be updated. // In case of temporary error, current_event_index is reset to 0 on // encountering a terminal event, so add a check for end_event and // temporary error. if ((worker->current_event_index > worker->last_current_event_index) || (end_event && worker->trans_retries == 1 && temporary_error)) slave_worker_update_pending_events(rli, ev); err: if (error) { if (log_warnings > 1) sql_print_information("Worker %lu is exiting: killed %i, error %i, " "running_status %d", worker->id, thd->killed.load(), thd->is_error(), worker->running_status.load()); worker->slave_worker_ends_group(ev, error, temporary_error); } if (end_event && !temporary_error) { mysql_mutex_lock(&worker->jobs_lock); clear_current_group_events(worker, rli, false); mysql_mutex_unlock(&worker->jobs_lock); } DBUG_RETURN(error); }