storage/innobase/dict/dict0dict.cc (5,053 lines of code) (raw):

/***************************************************************************** Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2012, Facebook Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /******************************************************************//** @file dict/dict0dict.cc Data dictionary system Created 1/8/1996 Heikki Tuuri ***********************************************************************/ #include "my_config.h" #include <stdlib.h> #include <strfunc.h> #include <sys/types.h> #include <algorithm> #include <string> #include "current_thd.h" #include "dict0dict.h" #include "fil0fil.h" #include "fts0fts.h" #include "ha_prototypes.h" #include "my_dbug.h" #include "my_inttypes.h" #include "mysqld.h" // system_charset_info #include "que0types.h" #include "row0sel.h" /** dummy index for ROW_FORMAT=REDUNDANT supremum and infimum records */ dict_index_t* dict_ind_redundant; #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG /** Flag to control insert buffer debugging. */ extern uint ibuf_debug; #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ #ifndef UNIV_HOTBACKUP #include <algorithm> #include <vector> #include "btr0btr.h" #include "btr0cur.h" #include "btr0sea.h" #include "buf0buf.h" #include "data0type.h" #include "dict0boot.h" #include "dict0crea.h" #include "dict0dd.h" #include "dict0mem.h" #include "dict0priv.h" #include "dict0stats.h" #include "fsp0sysspace.h" #include "fts0fts.h" #include "fts0types.h" #include "lock0lock.h" #include "mach0data.h" #include "mem0mem.h" #include "os0once.h" #include "page0page.h" #include "page0zip.h" #include "pars0pars.h" #include "pars0sym.h" #include "que0que.h" #include "rem0cmp.h" #include "row0ins.h" #include "row0log.h" #include "row0merge.h" #include "row0mysql.h" #include "row0upd.h" #include "srv0mon.h" #include "srv0start.h" #include "sync0sync.h" #include "trx0undo.h" #include "ut0new.h" /** the dictionary system */ dict_sys_t* dict_sys = NULL; /** The name of the data dictionary tablespace. */ const char* dict_sys_t::dd_space_name = "mysql"; /** The file name of the data dictionary tablespace */ const char* dict_sys_t::dd_space_file_name = "mysql.ibd"; /** The name of the hard-coded system tablespace. */ const char* dict_sys_t::sys_space_name = "innodb_system"; /** The name of the predefined temporary tablespace. */ const char* dict_sys_t::temp_space_name = "innodb_temporary"; /** The file name of the predefined temporary tablespace */ const char* dict_sys_t::temp_space_file_name = "ibtmp1"; /** The hard-coded tablespace name innodb_file_per_table. */ const char* dict_sys_t::file_per_table_name = "innodb_file_per_table"; /** the dictionary persisting structure */ dict_persist_t* dict_persist = NULL; /** @brief the data dictionary rw-latch protecting dict_sys table create, drop, etc. reserve this in X-mode; implicit or backround operations purge, rollback, foreign key checks reserve this in S-mode; we cannot trust that MySQL protects implicit or background operations a table drop since MySQL does not know of them; therefore we need this; NOTE: a transaction which reserves this must keep book on the mode in trx_t::dict_operation_lock_mode */ rw_lock_t* dict_operation_lock; /** Percentage of compression failures that are allowed in a single round */ ulong zip_failure_threshold_pct = 5; /** Maximum percentage of a page that can be allowed as a pad to avoid compression failures */ ulong zip_pad_max = 50; #define DICT_POOL_PER_TABLE_HASH 512 /*!< buffer pool max size per table hash table fixed size in bytes */ /** Identifies generated InnoDB foreign key names */ static char dict_ibfk[] = "_ibfk_"; /** Array to store table_ids of INNODB_SYS_* TABLES */ static table_id_t dict_sys_table_id[SYS_NUM_SYSTEM_TABLES]; /** Tries to find column names for the index and sets the col field of the index. @param[in] table table @param[in] index index @param[in] add_v new virtual columns added along with an add index call @return TRUE if the column names were found */ static ibool dict_index_find_cols( const dict_table_t* table, dict_index_t* index, const dict_add_v_col_t* add_v); /*******************************************************************//** Builds the internal dictionary cache representation for a clustered index, containing also system fields not defined by the user. @return own: the internal representation of the clustered index */ static dict_index_t* dict_index_build_internal_clust( /*============================*/ const dict_table_t* table, /*!< in: table */ dict_index_t* index); /*!< in: user representation of a clustered index */ /*******************************************************************//** Builds the internal dictionary cache representation for a non-clustered index, containing also system fields not defined by the user. @return own: the internal representation of the non-clustered index */ static dict_index_t* dict_index_build_internal_non_clust( /*================================*/ const dict_table_t* table, /*!< in: table */ dict_index_t* index); /*!< in: user representation of a non-clustered index */ /**********************************************************************//** Builds the internal dictionary cache representation for an FTS index. @return own: the internal representation of the FTS index */ static dict_index_t* dict_index_build_internal_fts( /*==========================*/ dict_table_t* table, /*!< in: table */ dict_index_t* index); /*!< in: user representation of an FTS index */ /**********************************************************************//** Removes an index from the dictionary cache. */ static void dict_index_remove_from_cache_low( /*=============================*/ dict_table_t* table, /*!< in/out: table */ dict_index_t* index, /*!< in, own: index */ ibool lru_evict); /*!< in: TRUE if page being evicted to make room in the table LRU list */ /**********************************************************************//** Removes a table object from the dictionary cache. */ static void dict_table_remove_from_cache_low( dict_table_t* table, /*!< in, own: table */ ibool lru_evict); /*!< in: TRUE if evicting from LRU */ #ifdef UNIV_DEBUG /**********************************************************************//** Validate the dictionary table LRU list. @return TRUE if validate OK */ static ibool dict_lru_validate(void); /*===================*/ /**********************************************************************//** Check if table is in the dictionary table LRU list. @return TRUE if table found */ static ibool dict_lru_find_table( /*================*/ const dict_table_t* find_table); /*!< in: table to find */ /**********************************************************************//** Check if a table exists in the dict table non-LRU list. @return TRUE if table found */ static ibool dict_non_lru_find_table( /*====================*/ const dict_table_t* find_table); /*!< in: table to find */ #endif /* UNIV_DEBUG */ /* Stream for storing detailed information about the latest foreign key and unique key errors. Only created if !srv_read_only_mode */ FILE* dict_foreign_err_file = NULL; /* mutex protecting the foreign and unique error buffers */ ib_mutex_t dict_foreign_err_mutex; /********************************************************************//** Checks if the database name in two table names is the same. @return TRUE if same db name */ ibool dict_tables_have_same_db( /*=====================*/ const char* name1, /*!< in: table name in the form dbname '/' tablename */ const char* name2) /*!< in: table name in the form dbname '/' tablename */ { for (; *name1 == *name2; name1++, name2++) { if (*name1 == '/') { return(TRUE); } ut_a(*name1); /* the names must contain '/' */ } return(FALSE); } /********************************************************************//** Return the end of table name where we have removed dbname and '/'. @return table name */ const char* dict_remove_db_name( /*================*/ const char* name) /*!< in: table name in the form dbname '/' tablename */ { const char* s = strchr(name, '/'); ut_a(s); return(s + 1); } /********************************************************************//** Get the database name length in a table name. @return database name length */ ulint dict_get_db_name_len( /*=================*/ const char* name) /*!< in: table name in the form dbname '/' tablename */ { const char* s; s = strchr(name, '/'); if (s == nullptr) { return(0); } return(s - name); } /********************************************************************//** Reserves the dictionary system mutex for MySQL. */ void dict_mutex_enter_for_mysql(void) /*============================*/ { mutex_enter(&dict_sys->mutex); } /********************************************************************//** Releases the dictionary system mutex for MySQL. */ void dict_mutex_exit_for_mysql(void) /*===========================*/ { mutex_exit(&dict_sys->mutex); } /** Allocate and init a dict_table_t's stats latch. This function must not be called concurrently on the same table object. @param[in,out] table_void table whose stats latch to create */ static void dict_table_stats_latch_alloc( void* table_void) { dict_table_t* table = static_cast<dict_table_t*>(table_void); /* Note: rw_lock_create() will call the constructor */ table->stats_latch = static_cast<rw_lock_t*>( ut_malloc_nokey(sizeof(rw_lock_t))); ut_a(table->stats_latch != NULL); rw_lock_create(dict_table_stats_key, table->stats_latch, SYNC_INDEX_TREE); } /** Deinit and free a dict_table_t's stats latch. This function must not be called concurrently on the same table object. @param[in,out] table table whose stats latch to free */ static void dict_table_stats_latch_free( dict_table_t* table) { rw_lock_free(table->stats_latch); ut_free(table->stats_latch); } /** Create a dict_table_t's stats latch or delay for lazy creation. This function is only called from either single threaded environment or from a thread that has not shared the table object with other threads. @param[in,out] table table whose stats latch to create @param[in] enabled if false then the latch is disabled and dict_table_stats_lock()/unlock() become noop on this table. */ void dict_table_stats_latch_create( dict_table_t* table, bool enabled) { if (!enabled) { table->stats_latch = NULL; table->stats_latch_created = os_once::DONE; return; } /* We create this lazily the first time it is used. */ table->stats_latch = NULL; table->stats_latch_created = os_once::NEVER_DONE; } /** Destroy a dict_table_t's stats latch. This function is only called from either single threaded environment or from a thread that has not shared the table object with other threads. @param[in,out] table table whose stats latch to destroy */ void dict_table_stats_latch_destroy( dict_table_t* table) { if (table->stats_latch_created == os_once::DONE && table->stats_latch != NULL) { dict_table_stats_latch_free(table); } } /** Lock the appropriate latch to protect a given table's statistics. @param[in] table table whose stats to lock @param[in] latch_mode RW_S_LATCH or RW_X_LATCH */ void dict_table_stats_lock( dict_table_t* table, ulint latch_mode) { ut_ad(table != NULL); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); os_once::do_or_wait_for_done( &table->stats_latch_created, dict_table_stats_latch_alloc, table); if (table->stats_latch == NULL) { /* This is a dummy table object that is private in the current thread and is not shared between multiple threads, thus we skip any locking. */ return; } switch (latch_mode) { case RW_S_LATCH: rw_lock_s_lock(table->stats_latch); break; case RW_X_LATCH: rw_lock_x_lock(table->stats_latch); break; case RW_NO_LATCH: /* fall through */ default: ut_error; } } /** Unlock the latch that has been locked by dict_table_stats_lock(). @param[in] table table whose stats to unlock @param[in] latch_mode RW_S_LATCH or RW_X_LATCH */ void dict_table_stats_unlock( dict_table_t* table, ulint latch_mode) { ut_ad(table != NULL); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); if (table->stats_latch == NULL) { /* This is a dummy table object that is private in the current thread and is not shared between multiple threads, thus we skip any locking. */ return; } switch (latch_mode) { case RW_S_LATCH: rw_lock_s_unlock(table->stats_latch); break; case RW_X_LATCH: rw_lock_x_unlock(table->stats_latch); break; case RW_NO_LATCH: /* fall through */ default: ut_error; } } /**********************************************************************//** Try to drop any indexes after an aborted index creation. This can also be after a server kill during DROP INDEX. */ static void dict_table_try_drop_aborted( /*========================*/ dict_table_t* table, /*!< in: table, or NULL if it needs to be looked up again */ table_id_t table_id, /*!< in: table identifier */ ulint ref_count) /*!< in: expected table->n_ref_count */ { trx_t* trx; trx = trx_allocate_for_background(); trx->op_info = "try to drop any indexes after an aborted index creation"; row_mysql_lock_data_dictionary(trx); trx_set_dict_operation(trx, TRX_DICT_OP_INDEX); if (table == NULL) { table = dd_table_open_on_id(table_id, nullptr, nullptr, true); /* Decrement the ref count. The table is MDL locked, so should not be dropped */ if (table) { dd_table_close(table, nullptr, nullptr, true); } } else { ut_ad(table->id == table_id); } if (table && table->get_ref_count() == ref_count && table->drop_aborted) { /* Silence a debug assertion in row_merge_drop_indexes(). */ ut_d(table->acquire()); row_merge_drop_indexes(trx, table, TRUE); ut_d(table->release()); ut_ad(table->get_ref_count() == ref_count); trx_commit_for_mysql(trx); } row_mysql_unlock_data_dictionary(trx); trx_free_for_background(trx); } /**********************************************************************//** When opening a table, try to drop any indexes after an aborted index creation. Release the dict_sys->mutex. */ static void dict_table_try_drop_aborted_and_mutex_exit( /*=======================================*/ dict_table_t* table, /*!< in: table (may be NULL) */ ibool try_drop) /*!< in: FALSE if should try to drop indexes whose online creation was aborted */ { if (try_drop && table != NULL && table->drop_aborted && table->get_ref_count() == 1 && table->first_index()) { /* Attempt to drop the indexes whose online creation was aborted. */ table_id_t table_id = table->id; mutex_exit(&dict_sys->mutex); dict_table_try_drop_aborted(table, table_id, 1); } else { mutex_exit(&dict_sys->mutex); } } /********************************************************************//** Decrements the count of open handles to a table. */ void dict_table_close( /*=============*/ dict_table_t* table, /*!< in/out: table */ ibool dict_locked, /*!< in: TRUE=data dictionary locked */ ibool try_drop) /*!< in: TRUE=try to drop any orphan indexes after an aborted online index creation */ { if (!dict_locked && !table->is_intrinsic()) { mutex_enter(&dict_sys->mutex); } ut_ad(mutex_own(&dict_sys->mutex) || table->is_intrinsic()); ut_a(table->get_ref_count() > 0); table->release(); /* Intrinsic table is not added to dictionary cache so skip other cache specific actions. */ if (table->is_intrinsic()) { return; } /* Force persistent stats re-read upon next open of the table so that FLUSH TABLE can be used to forcibly fetch stats from disk if they have been manually modified. We reset table->stat_initialized only if table reference count is 0 because we do not want too frequent stats re-reads (e.g. in other cases than FLUSH TABLE). */ if (strchr(table->name.m_name, '/') != NULL && table->get_ref_count() == 0 && dict_stats_is_persistent_enabled(table)) { dict_stats_deinit(table); } MONITOR_DEC(MONITOR_TABLE_REFERENCE); ut_ad(dict_lru_validate()); #ifdef UNIV_DEBUG if (table->can_be_evicted) { ut_ad(dict_lru_find_table(table)); } else { ut_ad(dict_non_lru_find_table(table)); } #endif /* UNIV_DEBUG */ if (!dict_locked) { table_id_t table_id = table->id; ibool drop_aborted; drop_aborted = try_drop && table->drop_aborted && table->get_ref_count() == 1 && table->first_index(); mutex_exit(&dict_sys->mutex); if (drop_aborted) { dict_table_try_drop_aborted(NULL, table_id, 0); } } } #endif /* !UNIV_HOTBACKUP */ /********************************************************************//** Closes the only open handle to a table and drops a table while assuring that dict_sys->mutex is held the whole time. This assures that the table is not evicted after the close when the count of open handles goes to zero. Because dict_sys->mutex is held, we do not need to call dict_table_prevent_eviction(). */ void dict_table_close_and_drop( /*======================*/ trx_t* trx, /*!< in: data dictionary transaction */ dict_table_t* table) /*!< in/out: table */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); ut_ad(trx->dict_operation != TRX_DICT_OP_NONE); ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE)); dict_table_close(table, TRUE, FALSE); #if defined UNIV_DEBUG || defined UNIV_DDL_DEBUG /* Nobody should have initialized the stats of the newly created table when this is called. So we know that it has not been added for background stats gathering. */ ut_a(!table->stat_initialized); #endif /* UNIV_DEBUG || UNIV_DDL_DEBUG */ row_merge_drop_table(trx, table); } /** Check if the table has a given (non_virtual) column. @param[in] table table object @param[in] col_name column name @param[in] col_nr column number guessed, 0 as default @return column number if the table has the specified column, otherwise table->n_def */ ulint dict_table_has_column( const dict_table_t* table, const char* col_name, ulint col_nr) { ulint col_max = table->n_def; ut_ad(table); ut_ad(col_name); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); if (col_nr < col_max && innobase_strcasecmp( col_name, table->get_col_name(col_nr)) == 0) { return(col_nr); } /** The order of column may changed, check it with other columns */ for (ulint i = 0; i < col_max; i++) { if (i != col_nr && innobase_strcasecmp( col_name, table->get_col_name(i)) == 0) { return(i); } } return(col_max); } /** Returns a virtual column's name. @param[in] table target table @param[in] col_nr virtual column number (nth virtual column) @return column name or NULL if column number out of range. */ const char* dict_table_get_v_col_name( const dict_table_t* table, ulint col_nr) { const char* s; ut_ad(table); ut_ad(col_nr < table->n_v_def); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); if (col_nr >= table->n_v_def) { return(NULL); } s = table->v_col_names; if (s != NULL) { for (ulint i = 0; i < col_nr; i++) { s += strlen(s) + 1; } } return(s); } /** Search virtual column's position in InnoDB according to its position in original table's position @param[in] table target table @param[in] col_nr column number (nth column in the MySQL table) @return virtual column's position in InnoDB, ULINT_UNDEFINED if not find */ static ulint dict_table_get_v_col_pos_for_mysql( const dict_table_t* table, ulint col_nr) { ulint i; ut_ad(table); ut_ad(col_nr < static_cast<ulint>(table->n_t_def)); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); for (i = 0; i < table->n_v_def; i++) { if (col_nr == dict_get_v_col_mysql_pos( table->v_cols[i].m_col.ind)) { break; } } if (i == table->n_v_def) { return(ULINT_UNDEFINED); } return(i); } /** Returns a virtual column's name according to its original MySQL table position. @param[in] table target table @param[in] col_nr column number (nth column in the table) @return column name. */ const char* dict_table_get_v_col_name_mysql( const dict_table_t* table, ulint col_nr) { ulint i = dict_table_get_v_col_pos_for_mysql(table, col_nr); if (i == ULINT_UNDEFINED) { return(NULL); } return(dict_table_get_v_col_name(table, i)); } /** Get nth virtual column according to its original MySQL table position @param[in] table target table @param[in] col_nr column number in MySQL Table definition @return dict_v_col_t ptr */ dict_v_col_t* dict_table_get_nth_v_col_mysql( const dict_table_t* table, ulint col_nr) { ulint i = dict_table_get_v_col_pos_for_mysql(table, col_nr); if (i == ULINT_UNDEFINED) { return(NULL); } return(dict_table_get_nth_v_col(table, i)); } #ifndef UNIV_HOTBACKUP /** Allocate and init the autoinc latch of a given table. This function must not be called concurrently on the same table object. @param[in,out] table_void table whose autoinc latch to create */ static void dict_table_autoinc_alloc( void* table_void) { dict_table_t* table = static_cast<dict_table_t*>(table_void); table->autoinc_mutex = UT_NEW_NOKEY(ib_mutex_t()); ut_a(table->autoinc_mutex != nullptr); mutex_create(LATCH_ID_AUTOINC, table->autoinc_mutex); table->autoinc_persisted_mutex = UT_NEW_NOKEY(ib_mutex_t()); ut_a(table->autoinc_persisted_mutex != nullptr); mutex_create(LATCH_ID_PERSIST_AUTOINC, table->autoinc_persisted_mutex); } /** Allocate and init the zip_pad_mutex of a given index. This function must not be called concurrently on the same index object. @param[in,out] index_void index whose zip_pad_mutex to create */ static void dict_index_zip_pad_alloc( void* index_void) { dict_index_t* index = static_cast<dict_index_t*>(index_void); index->zip_pad.mutex = UT_NEW_NOKEY(SysMutex()); ut_a(index->zip_pad.mutex != NULL); mutex_create(LATCH_ID_ZIP_PAD_MUTEX, index->zip_pad.mutex); } /********************************************************************//** Acquire the autoinc lock. */ void dict_table_autoinc_lock( /*====================*/ dict_table_t* table) /*!< in/out: table */ { os_once::do_or_wait_for_done( &table->autoinc_mutex_created, dict_table_autoinc_alloc, table); mutex_enter(table->autoinc_mutex); } /** Acquire the zip_pad_mutex latch. @param[in,out] index the index whose zip_pad_mutex to acquire.*/ static void dict_index_zip_pad_lock( dict_index_t* index) { os_once::do_or_wait_for_done( &index->zip_pad.mutex_created, dict_index_zip_pad_alloc, index); mutex_enter(index->zip_pad.mutex); } /********************************************************************//** Unconditionally set the autoinc counter. */ void dict_table_autoinc_initialize( /*==========================*/ dict_table_t* table, /*!< in/out: table */ ib_uint64_t value) /*!< in: next value to assign to a row */ { ut_ad(dict_table_autoinc_own(table)); table->autoinc = value; } /** Get all the FTS indexes on a table. @param[in] table table @param[out] indexes all FTS indexes on this table @return number of FTS indexes */ ulint dict_table_get_all_fts_indexes( dict_table_t* table, ib_vector_t* indexes) { dict_index_t* index; ut_a(ib_vector_size(indexes) == 0); for (index = table->first_index(); index; index = index->next()) { if (index->type == DICT_FTS) { ib_vector_push(indexes, &index); } } return(ib_vector_size(indexes)); } /********************************************************************//** Reads the next autoinc value (== autoinc counter value), 0 if not yet initialized. @return value for a new row, or 0 */ ib_uint64_t dict_table_autoinc_read( /*====================*/ const dict_table_t* table) /*!< in: table */ { ut_ad(dict_table_autoinc_own(table)); return(table->autoinc); } /********************************************************************//** Updates the autoinc counter if the value supplied is greater than the current value. */ void dict_table_autoinc_update_if_greater( /*=================================*/ dict_table_t* table, /*!< in/out: table */ ib_uint64_t value) /*!< in: value which was assigned to a row */ { ut_ad(dict_table_autoinc_own(table)); if (value > table->autoinc) { table->autoinc = value; } } /********************************************************************//** Release the autoinc lock. */ void dict_table_autoinc_unlock( /*======================*/ dict_table_t* table) /*!< in/out: table */ { mutex_exit(table->autoinc_mutex); } /** Set the persisted autoinc value of the table to the new counter, and write the table's dynamic metadata back to DDTableBuffer. This function should only be used in DDL operation functions like 1. create_table_info_t::initialize_autoinc() 2. ha_innobase::commit_inplace_alter_table() 3. row_rename_table_for_mysql() 4. When we do TRUNCATE TABLE WL#9536 TODO: We should reconsider the solution here. Once the DDL becomes crash-safe, we could not only reset the counter in DDTableBuffer in this simple way. We also have to make sure the update on this table is crash-safe, but not forget the old value because it doesn't support UNDO logging. @param[in,out] table table @param[in] counter new autoinc counter @param[in] log_reset if true, it means that the persisted autoinc is updated to a smaller one, an autoinc change log with value of 0 would be written, otherwise nothing to do */ void dict_table_set_and_persist_autoinc( dict_table_t* table, ib_uint64_t counter, bool log_reset) { ut_ad(dict_table_has_autoinc_col(table)); mutex_enter(table->autoinc_persisted_mutex); if (table->autoinc_persisted == counter && table->dirty_status != METADATA_DIRTY) { /* If the counter has already been written back to DDTableBuffer, we don't need to write back again. This could happen during ALTER TABLE, which doesn't change the AUTOINC counter value. */ mutex_exit(table->autoinc_persisted_mutex); return; } /* Even now, we could be not sure if the counter has already been persisted. It could be some other dynamic persistent metadata makes the dirty_status as METADATA_DIRTY. However, we still have to try to write back. */ table->autoinc_persisted = counter; dict_table_mark_dirty(table); mutex_exit(table->autoinc_persisted_mutex); /* Here the dirty_status would be set to METADATA_BUFFERED, but this function is only called for DDL operations when there is no any other DML. See comments in AutoIncLogMtr::log(). */ dict_table_persist_to_dd_table_buffer(table); if (log_reset) { mtr_t mtr; AutoIncLogMtr autoinc_mtr(&mtr); autoinc_mtr.start(); /* We write a redo log with counter value of 0 to indicate that all redo logs logged before would be discarded, so that we won't apply old bigger counter to the table during recovery, which is incorrect if we update the counter to a smaller one. */ autoinc_mtr.log(table, 0); autoinc_mtr.commit(); } } /** Returns TRUE if the index contains a column or a prefix of that column. @param[in] index index @param[in] n column number @param[in] is_virtual whether it is a virtual col @return TRUE if contains the column or its prefix */ ibool dict_index_contains_col_or_prefix( const dict_index_t* index, ulint n, bool is_virtual) { const dict_field_t* field; const dict_col_t* col; ulint pos; ulint n_fields; ut_ad(index); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); if (index->is_clustered()) { return(TRUE); } if (is_virtual) { col = &dict_table_get_nth_v_col(index->table, n)->m_col; } else { col = index->table->get_col(n); } n_fields = dict_index_get_n_fields(index); for (pos = 0; pos < n_fields; pos++) { field = index->get_field(pos); if (col == field->col) { return(TRUE); } } return(FALSE); } /********************************************************************//** Looks for a matching field in an index. The column has to be the same. The column in index must be complete, or must contain a prefix longer than the column in index2. That is, we must be able to construct the prefix in index2 from the prefix in index. @return position in internal representation of the index; ULINT_UNDEFINED if not contained */ ulint dict_index_get_nth_field_pos( /*=========================*/ const dict_index_t* index, /*!< in: index from which to search */ const dict_index_t* index2, /*!< in: index */ ulint n) /*!< in: field number in index2 */ { const dict_field_t* field; const dict_field_t* field2; ulint n_fields; ulint pos; ut_ad(index); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); field2 = index2->get_field(n); n_fields = dict_index_get_n_fields(index); /* Are we looking for a MBR (Minimum Bound Box) field of a spatial index */ bool is_mbr_fld = (n == 0 && dict_index_is_spatial(index2)); for (pos = 0; pos < n_fields; pos++) { field = index->get_field(pos); /* The first field of a spatial index is a transformed MBR (Minimum Bound Box) field made out of original column, so its field->col still points to original cluster index col, but the actual content is different. So we cannot consider them equal if neither of them is MBR field */ if (pos == 0 && dict_index_is_spatial(index) && !is_mbr_fld) { continue; } if (field->col == field2->col && (field->prefix_len == 0 || (field->prefix_len >= field2->prefix_len && field2->prefix_len != 0))) { return(pos); } } return(ULINT_UNDEFINED); } /**********************************************************************//** Returns a table object based on table id. @return table, NULL if does not exist */ dict_table_t* dict_table_open_on_id( /*==================*/ table_id_t table_id, /*!< in: table id */ ibool dict_locked, /*!< in: TRUE=data dictionary locked */ dict_table_op_t table_op) /*!< in: operation to perform */ { dict_table_t* table; if (!dict_locked) { mutex_enter(&dict_sys->mutex); } ut_ad(mutex_own(&dict_sys->mutex)); table = dict_table_open_on_id_low( table_id, table_op == DICT_TABLE_OP_LOAD_TABLESPACE ? DICT_ERR_IGNORE_RECOVER_LOCK : DICT_ERR_IGNORE_NONE); if (table != NULL) { if (table->can_be_evicted) { dict_move_to_mru(table); } table->acquire(); MONITOR_INC(MONITOR_TABLE_REFERENCE); } else if (dict_table_is_sdi(table_id)) { /* The table is SDI table */ space_id_t space_id = dict_sdi_get_space_id(table_id); uint32_t copy_num = dict_sdi_get_copy_num(table_id); /* Create in-memory table oject for SDI table */ dict_index_t* sdi_index = dict_sdi_create_idx_in_mem( space_id, copy_num, false, 0); if (sdi_index == NULL) { if (!dict_locked) { mutex_exit(&dict_sys->mutex); } return(NULL); } table = sdi_index->table; ut_ad(table != NULL); table->acquire(); } if (!dict_locked) { dict_table_try_drop_aborted_and_mutex_exit( table, table_op == DICT_TABLE_OP_DROP_ORPHAN); } return(table); } /********************************************************************//** Looks for non-virtual column n position in the clustered index. @return position in internal representation of the clustered index */ ulint dict_table_get_nth_col_pos( /*=======================*/ const dict_table_t* table, /*!< in: table */ ulint n) /*!< in: column number */ { return(table->first_index()->get_col_pos(n)); } /** Get the innodb column position for a non-virtual column according to its original MySQL table position n @param[in] table table @param[in] n MySQL column position @return column position in InnoDB */ ulint dict_table_mysql_pos_to_innodb( const dict_table_t* table, ulint n) { ut_ad(n < table->n_t_cols); if (table->n_v_def == 0) { /* No virtual columns, the MySQL position is the same as InnoDB position */ return(n); } /* Find out how many virtual columns are stored in front of 'n' */ ulint v_before = 0; for (ulint i = 0; i < table->n_v_def; ++i) { if (table->v_cols[i].m_col.ind > n) { break; } ++v_before; } ut_ad(n >= v_before); return(n - v_before); } /********************************************************************//** Checks if a column is in the ordering columns of the clustered index of a table. Column prefixes are treated like whole columns. @return TRUE if the column, or its prefix, is in the clustered key */ ibool dict_table_col_in_clustered_key( /*============================*/ const dict_table_t* table, /*!< in: table */ ulint n) /*!< in: column number */ { const dict_index_t* index; const dict_field_t* field; const dict_col_t* col; ulint pos; ulint n_fields; ut_ad(table); col = table->get_col(n); index = table->first_index(); n_fields = dict_index_get_n_unique(index); for (pos = 0; pos < n_fields; pos++) { field = index->get_field(pos); if (col == field->col) { return(TRUE); } } return(FALSE); } /**********************************************************************//** Inits the data dictionary module. */ void dict_init(void) /*===========*/ { dict_operation_lock = static_cast<rw_lock_t*>( ut_zalloc_nokey(sizeof(*dict_operation_lock))); dict_sys = static_cast<dict_sys_t*>(ut_zalloc_nokey(sizeof(*dict_sys))); UT_LIST_INIT(dict_sys->table_LRU, &dict_table_t::table_LRU); UT_LIST_INIT(dict_sys->table_non_LRU, &dict_table_t::table_LRU); mutex_create(LATCH_ID_DICT_SYS, &dict_sys->mutex); dict_sys->table_hash = hash_create( buf_pool_get_curr_size() / (DICT_POOL_PER_TABLE_HASH * UNIV_WORD_SIZE)); dict_sys->table_id_hash = hash_create( buf_pool_get_curr_size() / (DICT_POOL_PER_TABLE_HASH * UNIV_WORD_SIZE)); rw_lock_create(dict_operation_lock_key, dict_operation_lock, SYNC_DICT_OPERATION); if (!srv_read_only_mode) { dict_foreign_err_file = os_file_create_tmpfile(NULL); ut_a(dict_foreign_err_file); } mutex_create(LATCH_ID_DICT_FOREIGN_ERR, &dict_foreign_err_mutex); } /**********************************************************************//** Move to the most recently used segment of the LRU list. */ void dict_move_to_mru( /*=============*/ dict_table_t* table) /*!< in: table to move to MRU */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(dict_lru_validate()); ut_ad(dict_lru_find_table(table)); ut_a(table->can_be_evicted); UT_LIST_REMOVE(dict_sys->table_LRU, table); UT_LIST_ADD_FIRST(dict_sys->table_LRU, table); ut_ad(dict_lru_validate()); } /**********************************************************************//** Returns a table object and increment its open handle count. NOTE! This is a high-level function to be used mainly from outside the 'dict' module. Inside this directory dict_table_get_low is usually the appropriate function. @return table, NULL if does not exist */ dict_table_t* dict_table_open_on_name( /*====================*/ const char* table_name, /*!< in: table name */ ibool dict_locked, /*!< in: TRUE=data dictionary locked */ ibool try_drop, /*!< in: TRUE=try to drop any orphan indexes after an aborted online index creation */ dict_err_ignore_t ignore_err) /*!< in: error to be ignored when loading a table definition */ { dict_table_t* table; DBUG_ENTER("dict_table_open_on_name"); DBUG_PRINT("dict_table_open_on_name", ("table: '%s'", table_name)); if (!dict_locked) { mutex_enter(&dict_sys->mutex); } ut_ad(table_name); ut_ad(mutex_own(&dict_sys->mutex)); table = dict_table_check_if_in_cache_low(table_name); if (table == NULL) { table = dict_load_table(table_name, true, ignore_err); } ut_ad(!table || table->cached); if (table != NULL) { if (ignore_err == DICT_ERR_IGNORE_NONE && table->is_corrupted()) { /* Make life easy for drop table. */ dict_table_prevent_eviction(table); if (!dict_locked) { mutex_exit(&dict_sys->mutex); } ib::info() << "Table " << table->name << " is corrupted. Please drop the table" " and recreate it"; DBUG_RETURN(NULL); } if (table->can_be_evicted) { dict_move_to_mru(table); } table->acquire(); MONITOR_INC(MONITOR_TABLE_REFERENCE); } ut_ad(dict_lru_validate()); if (!dict_locked) { dict_table_try_drop_aborted_and_mutex_exit(table, try_drop); } DBUG_RETURN(table); } #endif /* !UNIV_HOTBACKUP */ /**********************************************************************//** Adds system columns to a table object. */ void dict_table_add_system_columns( /*==========================*/ dict_table_t* table, /*!< in/out: table */ mem_heap_t* heap) /*!< in: temporary heap */ { ut_ad(table); ut_ad(table->n_def == (table->n_cols - table->get_n_sys_cols())); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(!table->cached); /* NOTE: the system columns MUST be added in the following order (so that they can be indexed by the numerical value of DATA_ROW_ID, etc.) and as the last columns of the table memory object. The clustered index will not always physically contain all system columns. Intrinsic table don't need DB_ROLL_PTR as UNDO logging is turned off for these tables. */ dict_mem_table_add_col(table, heap, "DB_ROW_ID", DATA_SYS, DATA_ROW_ID | DATA_NOT_NULL, DATA_ROW_ID_LEN); #if (DATA_ITT_N_SYS_COLS != 2) #error "DATA_ITT_N_SYS_COLS != 2" #endif #if DATA_ROW_ID != 0 #error "DATA_ROW_ID != 0" #endif dict_mem_table_add_col(table, heap, "DB_TRX_ID", DATA_SYS, DATA_TRX_ID | DATA_NOT_NULL, DATA_TRX_ID_LEN); #if DATA_TRX_ID != 1 #error "DATA_TRX_ID != 1" #endif if (!table->is_intrinsic()) { dict_mem_table_add_col(table, heap, "DB_ROLL_PTR", DATA_SYS, DATA_ROLL_PTR | DATA_NOT_NULL, DATA_ROLL_PTR_LEN); #if DATA_ROLL_PTR != 2 #error "DATA_ROLL_PTR != 2" #endif /* This check reminds that if a new system column is added to the program, it should be dealt with here */ #if DATA_N_SYS_COLS != 3 #error "DATA_N_SYS_COLS != 3" #endif } } #ifndef UNIV_HOTBACKUP /** Mark if table has big rows. @param[in,out] table table handler */ void dict_table_set_big_rows( dict_table_t* table) { ulint row_len = 0; for (ulint i = 0; i < table->n_def; i++) { ulint col_len = table->get_col(i)->get_max_size(); row_len += col_len; /* If we have a single unbounded field, or several gigantic fields, mark the maximum row size as BIG_ROW_SIZE. */ if (row_len >= BIG_ROW_SIZE || col_len >= BIG_ROW_SIZE) { row_len = BIG_ROW_SIZE; break; } } table->big_rows = (row_len >= BIG_ROW_SIZE) ? TRUE : FALSE; } /** Adds a table object to the dictionary cache. @param[in,out] table table @param[in] can_be_evicted true if can be evicted @param[in,out] heap temporary heap */ void dict_table_add_to_cache( dict_table_t* table, ibool can_be_evicted, mem_heap_t* heap) { ulint fold; ulint id_fold; ut_ad(dict_lru_validate()); ut_ad(mutex_own(&dict_sys->mutex)); table->cached = true; fold = ut_fold_string(table->name.m_name); id_fold = ut_fold_ull(table->id); dict_table_set_big_rows(table); /* Look for a table with the same name: error if such exists */ { dict_table_t* table2; HASH_SEARCH(name_hash, dict_sys->table_hash, fold, dict_table_t*, table2, ut_ad(table2->cached), !strcmp(table2->name.m_name, table->name.m_name)); ut_a(table2 == NULL); #ifdef UNIV_DEBUG /* Look for the same table pointer with a different name */ HASH_SEARCH_ALL(name_hash, dict_sys->table_hash, dict_table_t*, table2, ut_ad(table2->cached), table2 == table); ut_ad(table2 == NULL); #endif /* UNIV_DEBUG */ } /* Look for a table with the same id: error if such exists */ { dict_table_t* table2; HASH_SEARCH(id_hash, dict_sys->table_id_hash, id_fold, dict_table_t*, table2, ut_ad(table2->cached), table2->id == table->id); ut_a(table2 == NULL); #ifdef UNIV_DEBUG /* Look for the same table pointer with a different id */ HASH_SEARCH_ALL(id_hash, dict_sys->table_id_hash, dict_table_t*, table2, ut_ad(table2->cached), table2 == table); ut_ad(table2 == NULL); #endif /* UNIV_DEBUG */ } /* Add table to hash table of tables */ HASH_INSERT(dict_table_t, name_hash, dict_sys->table_hash, fold, table); /* Add table to hash table of tables based on table id */ HASH_INSERT(dict_table_t, id_hash, dict_sys->table_id_hash, id_fold, table); table->can_be_evicted = can_be_evicted; if (table->can_be_evicted) { UT_LIST_ADD_FIRST(dict_sys->table_LRU, table); } else { UT_LIST_ADD_FIRST(dict_sys->table_non_LRU, table); } ut_ad(dict_lru_validate()); table->dirty_status = METADATA_CLEAN; dict_sys->size += mem_heap_get_size(table->heap) + strlen(table->name.m_name) + 1; DBUG_EXECUTE_IF("dd_upgrade", if (srv_is_upgrade_mode && srv_upgrade_old_undo_found) { ib::info() << "Adding table to cache: " << table->name; } ); } /**********************************************************************//** Test whether a table can be evicted from the LRU cache. @return TRUE if table can be evicted. */ static ibool dict_table_can_be_evicted( /*======================*/ const dict_table_t* table) /*!< in: table to test */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); ut_a(table->can_be_evicted); ut_a(table->foreign_set.empty()); ut_a(table->referenced_set.empty()); if (table->get_ref_count() == 0) { const dict_index_t* index; /* The transaction commit and rollback are called from outside the handler interface. This means that there is a window where the table->n_ref_count can be zero but the table instance is in "use". */ if (lock_table_has_locks(table)) { return(FALSE); } for (index = table->first_index(); index != NULL; index = index->next()) { const btr_search_t* info = btr_search_get_info(index); /* We are not allowed to free the in-memory index struct dict_index_t until all entries in the adaptive hash index that point to any of the page belonging to his b-tree index are dropped. This is so because dropping of these entries require access to dict_index_t struct. To avoid such scenario we keep a count of number of such pages in the search_info and only free the dict_index_t struct when this count drops to zero. See also: dict_index_remove_from_cache_low() */ if (btr_search_info_get_ref_count(info, index) > 0) { return(FALSE); } } return(TRUE); } return(FALSE); } /**********************************************************************//** Make room in the table cache by evicting an unused table. The unused table should not be part of FK relationship and currently not used in any user transaction. There is no guarantee that it will remove a table. @return number of tables evicted. If the number of tables in the dict_LRU is less than max_tables it will not do anything. */ ulint dict_make_room_in_cache( /*====================*/ ulint max_tables, /*!< in: max tables allowed in cache */ ulint pct_check) /*!< in: max percent to check */ { ulint i; ulint len; dict_table_t* table; ulint check_up_to; ulint n_evicted = 0; ut_a(pct_check > 0); ut_a(pct_check <= 100); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); ut_ad(dict_lru_validate()); i = len = UT_LIST_GET_LEN(dict_sys->table_LRU); if (len < max_tables) { return(0); } check_up_to = len - ((len * pct_check) / 100); /* Check for overflow */ ut_a(i == 0 || check_up_to <= i); /* Find a suitable candidate to evict from the cache. Don't scan the entire LRU list. Only scan pct_check list entries. */ for (table = UT_LIST_GET_LAST(dict_sys->table_LRU); table != NULL && i > check_up_to && (len - n_evicted) > max_tables; --i) { dict_table_t* prev_table; prev_table = UT_LIST_GET_PREV(table_LRU, table); if (dict_table_can_be_evicted(table)) { dict_table_remove_from_cache_low(table, TRUE); ++n_evicted; } table = prev_table; } return(n_evicted); } /**********************************************************************//** Move a table to the non-LRU list from the LRU list. */ void dict_table_move_from_lru_to_non_lru( /*================================*/ dict_table_t* table) /*!< in: table to move from LRU to non-LRU */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(dict_lru_find_table(table)); ut_a(table->can_be_evicted); UT_LIST_REMOVE(dict_sys->table_LRU, table); UT_LIST_ADD_LAST(dict_sys->table_non_LRU, table); table->can_be_evicted = FALSE; } /** Move a table to the LRU end from the non LRU list. @param[in] table InnoDB table object */ void dict_table_move_from_non_lru_to_lru( dict_table_t* table) { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(dict_non_lru_find_table(table)); ut_a(!table->can_be_evicted); UT_LIST_REMOVE(dict_sys->table_non_LRU, table); UT_LIST_ADD_LAST(dict_sys->table_LRU, table); table->can_be_evicted = TRUE; } /** Look up an index in a table. @param[in] table table @param[in] id index identifier @return index @retval NULL if not found */ static const dict_index_t* dict_table_find_index_on_id( const dict_table_t* table, const index_id_t& id) { for (const dict_index_t* index = table->first_index(); index != NULL; index = index->next()) { if (index->space == id.m_space_id && index->id == id.m_index_id) { return(index); } } return(NULL); } /** Look up an index. @param[in] id index identifier @return index or NULL if not found */ const dict_index_t* dict_index_find( const index_id_t& id) { const dict_table_t* table; ut_ad(mutex_own(&dict_sys->mutex)); for (table = UT_LIST_GET_FIRST(dict_sys->table_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { const dict_index_t* index = dict_table_find_index_on_id( table, id); if (index != NULL) { return(index); } } for (table = UT_LIST_GET_FIRST(dict_sys->table_non_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { const dict_index_t* index = dict_table_find_index_on_id( table, id); if (index != NULL) { return(index); } } return(NULL); } /** Function object to remove a foreign key constraint from the referenced_set of the referenced table. The foreign key object is also removed from the dictionary cache. The foreign key constraint is not removed from the foreign_set of the table containing the constraint. */ struct dict_foreign_remove_partial { void operator()(dict_foreign_t* foreign) { dict_table_t* table = foreign->referenced_table; if (table != NULL) { table->referenced_set.erase(foreign); } dict_foreign_free(foreign); } }; /**********************************************************************//** Renames a table object. @return TRUE if success */ dberr_t dict_table_rename_in_cache( /*=======================*/ dict_table_t* table, /*!< in/out: table */ const char* new_name, /*!< in: new name */ ibool rename_also_foreigns)/*!< in: in ALTER TABLE we want to preserve the original table name in constraints which reference it */ { dberr_t err; dict_foreign_t* foreign; dict_index_t* index; ulint fold; char old_name[MAX_FULL_NAME_LEN + 1]; os_file_type_t ftype; bool exists; ut_ad(mutex_own(&dict_sys->mutex)); /* store the old/current name to an automatic variable */ if (strlen(table->name.m_name) + 1 <= sizeof(old_name)) { strcpy(old_name, table->name.m_name); } else { ib::fatal() << "Too long table name: " << table->name << ", max length is " << MAX_FULL_NAME_LEN; } fold = ut_fold_string(new_name); /* Look for a table with the same name: error if such exists */ dict_table_t* table2; HASH_SEARCH(name_hash, dict_sys->table_hash, fold, dict_table_t*, table2, ut_ad(table2->cached), (ut_strcmp(table2->name.m_name, new_name) == 0)); DBUG_EXECUTE_IF("dict_table_rename_in_cache_failure", if (table2 == NULL) { table2 = (dict_table_t*) -1; } ); if (table2) { ib::error() << "Cannot rename table '" << old_name << "' to '" << new_name << "' since the" " dictionary cache already contains '" << new_name << "'."; return(DB_ERROR); } /* If the table is stored in a single-table tablespace, rename the tablespace file. */ if (dict_table_is_discarded(table)) { char* filepath; ut_ad(dict_table_is_file_per_table(table)); ut_ad(!table->is_temporary()); /* Make sure the data_dir_path is set. */ dict_get_and_save_data_dir_path(table, true); if (DICT_TF_HAS_DATA_DIR(table->flags)) { ut_a(table->data_dir_path); filepath = fil_make_filepath( table->data_dir_path, table->name.m_name, IBD, true); } else { filepath = fil_make_filepath( NULL, table->name.m_name, IBD, false); } if (filepath == NULL) { return(DB_OUT_OF_MEMORY); } fil_delete_tablespace(table->space, BUF_REMOVE_ALL_NO_WRITE); /* Delete any temp file hanging around. */ if (os_file_status(filepath, &exists, &ftype) && exists && !os_file_delete_if_exists(innodb_temp_file_key, filepath, NULL)) { ib::info() << "Delete of " << filepath << " failed."; } ut_free(filepath); } else if (dict_table_is_file_per_table(table)) { char* new_path = NULL; char* old_path = fil_space_get_first_path(table->space); ut_ad(!table->is_temporary()); if (DICT_TF_HAS_DATA_DIR(table->flags)) { new_path = os_file_make_new_pathname( old_path, new_name); } else { new_path = fil_make_filepath( NULL, new_name, IBD, false); } /* New filepath must not exist. */ err = fil_rename_tablespace_check( table->space, old_path, new_path, false); if (err != DB_SUCCESS) { ut_free(old_path); ut_free(new_path); return(err); } bool success = fil_rename_tablespace( table->space, old_path, new_name, new_path); ut_free(old_path); ut_free(new_path); if (!success) { return(DB_ERROR); } } /* Remove table from the hash tables of tables */ HASH_DELETE(dict_table_t, name_hash, dict_sys->table_hash, ut_fold_string(old_name), table); if (strlen(new_name) > strlen(table->name.m_name)) { /* We allocate MAX_FULL_NAME_LEN + 1 bytes here to avoid memory fragmentation, we assume a repeated calls of ut_realloc() with the same size do not cause fragmentation */ ut_a(strlen(new_name) <= MAX_FULL_NAME_LEN); table->name.m_name = static_cast<char*>( ut_realloc(table->name.m_name, MAX_FULL_NAME_LEN + 1)); } strcpy(table->name.m_name, new_name); /* Add table to hash table of tables */ HASH_INSERT(dict_table_t, name_hash, dict_sys->table_hash, fold, table); dict_sys->size += strlen(new_name) - strlen(old_name); ut_a(dict_sys->size > 0); /* Update the table_name field in indexes */ for (index = table->first_index(); index != NULL; index = index->next()) { index->table_name = table->name.m_name; } if (!rename_also_foreigns) { /* In ALTER TABLE we think of the rename table operation in the direction table -> temporary table (#sql...) as dropping the table with the old name and creating a new with the new name. Thus we kind of drop the constraints from the dictionary cache here. The foreign key constraints will be inherited to the new table from the system tables through a call of dict_load_foreigns. */ /* Remove the foreign constraints from the cache */ std::for_each(table->foreign_set.begin(), table->foreign_set.end(), dict_foreign_remove_partial()); table->foreign_set.clear(); /* Reset table field in referencing constraints */ for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; foreign->referenced_table = NULL; foreign->referenced_index = NULL; } /* Make the set of referencing constraints empty */ table->referenced_set.clear(); return(DB_SUCCESS); } /* Update the table name fields in foreign constraints, and update also the constraint id of new format >= 4.0.18 constraints. Note that at this point we have already changed table->name to the new name. */ dict_foreign_set fk_set; for (;;) { dict_foreign_set::iterator it = table->foreign_set.begin(); if (it == table->foreign_set.end()) { break; } foreign = *it; if (foreign->referenced_table) { foreign->referenced_table->referenced_set.erase(foreign); } if (ut_strlen(foreign->foreign_table_name) < ut_strlen(table->name.m_name)) { /* Allocate a longer name buffer; TODO: store buf len to save memory */ foreign->foreign_table_name = mem_heap_strdup( foreign->heap, table->name.m_name); dict_mem_foreign_table_name_lookup_set(foreign, TRUE); } else { strcpy(foreign->foreign_table_name, table->name.m_name); dict_mem_foreign_table_name_lookup_set(foreign, FALSE); } if (strchr(foreign->id, '/')) { /* This is a >= 4.0.18 format id */ ulint db_len; char* old_id; char old_name_cs_filename[MAX_TABLE_NAME_LEN+20]; uint errors = 0; /* All table names are internally stored in charset my_charset_filename (except the temp tables and the partition identifier suffix in partition tables). The foreign key constraint names are internally stored in UTF-8 charset. The variable fkid here is used to store foreign key constraint name in charset my_charset_filename for comparison further below. */ char fkid[MAX_TABLE_NAME_LEN+20]; ibool on_tmp = FALSE; /* The old table name in my_charset_filename is stored in old_name_cs_filename */ strncpy(old_name_cs_filename, old_name, MAX_TABLE_NAME_LEN); if (strstr(old_name, TEMP_TABLE_PATH_PREFIX) == NULL) { innobase_convert_to_system_charset( strchr(old_name_cs_filename, '/') + 1, strchr(old_name, '/') + 1, MAX_TABLE_NAME_LEN, &errors); if (errors) { /* There has been an error to convert old table into UTF-8. This probably means that the old table name is actually in UTF-8. */ innobase_convert_to_filename_charset( strchr(old_name_cs_filename, '/') + 1, strchr(old_name, '/') + 1, MAX_TABLE_NAME_LEN); } else { /* Old name already in my_charset_filename */ strncpy(old_name_cs_filename, old_name, MAX_TABLE_NAME_LEN); } } strncpy(fkid, foreign->id, MAX_TABLE_NAME_LEN); if (strstr(fkid, TEMP_TABLE_PATH_PREFIX) == NULL) { innobase_convert_to_filename_charset( strchr(fkid, '/') + 1, strchr(foreign->id, '/') + 1, MAX_TABLE_NAME_LEN+20); } else { on_tmp = TRUE; } old_id = mem_strdup(foreign->id); if (ut_strlen(fkid) > ut_strlen(old_name_cs_filename) + ((sizeof dict_ibfk) - 1) && !memcmp(fkid, old_name_cs_filename, ut_strlen(old_name_cs_filename)) && !memcmp(fkid + ut_strlen(old_name_cs_filename), dict_ibfk, (sizeof dict_ibfk) - 1)) { /* This is a generated >= 4.0.18 format id */ char table_name[MAX_TABLE_NAME_LEN] = ""; uint errors = 0; if (strlen(table->name.m_name) > strlen(old_name)) { foreign->id = static_cast<char*>( mem_heap_alloc( foreign->heap, strlen(table->name.m_name) + strlen(old_id) + 1)); } /* Convert the table name to UTF-8 */ strncpy(table_name, table->name.m_name, MAX_TABLE_NAME_LEN); innobase_convert_to_system_charset( strchr(table_name, '/') + 1, strchr(table->name.m_name, '/') + 1, MAX_TABLE_NAME_LEN, &errors); if (errors) { /* Table name could not be converted from charset my_charset_filename to UTF-8. This means that the table name is already in UTF-8 (#mysql#50). */ strncpy(table_name, table->name.m_name, MAX_TABLE_NAME_LEN); } /* Replace the prefix 'databasename/tablename' with the new names */ strcpy(foreign->id, table_name); if (on_tmp) { strcat(foreign->id, old_id + ut_strlen(old_name)); } else { sprintf(strchr(foreign->id, '/') + 1, "%s%s", strchr(table_name, '/') +1, strstr(old_id, "_ibfk_") ); } } else { /* This is a >= 4.0.18 format id where the user gave the id name */ db_len = dict_get_db_name_len( table->name.m_name) + 1; if (db_len - 1 > dict_get_db_name_len(foreign->id)) { foreign->id = static_cast<char*>( mem_heap_alloc( foreign->heap, db_len + strlen(old_id) + 1)); } /* Replace the database prefix in id with the one from table->name */ ut_memcpy(foreign->id, table->name.m_name, db_len); strcpy(foreign->id + db_len, dict_remove_db_name(old_id)); } ut_free(old_id); } table->foreign_set.erase(it); fk_set.insert(foreign); if (foreign->referenced_table) { foreign->referenced_table->referenced_set.insert(foreign); } } ut_a(table->foreign_set.empty()); table->foreign_set.swap(fk_set); for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; if (ut_strlen(foreign->referenced_table_name) < ut_strlen(table->name.m_name)) { /* Allocate a longer name buffer; TODO: store buf len to save memory */ foreign->referenced_table_name = mem_heap_strdup( foreign->heap, table->name.m_name); dict_mem_referenced_table_name_lookup_set( foreign, TRUE); } else { /* Use the same buffer */ strcpy(foreign->referenced_table_name, table->name.m_name); dict_mem_referenced_table_name_lookup_set( foreign, FALSE); } } return(DB_SUCCESS); } /**********************************************************************//** Change the id of a table object in the dictionary cache. This is used in DISCARD TABLESPACE. */ void dict_table_change_id_in_cache( /*==========================*/ dict_table_t* table, /*!< in/out: table object already in cache */ table_id_t new_id) /*!< in: new id to set */ { ut_ad(table); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* Remove the table from the hash table of id's */ HASH_DELETE(dict_table_t, id_hash, dict_sys->table_id_hash, ut_fold_ull(table->id), table); table->id = new_id; /* Add the table back to the hash table */ HASH_INSERT(dict_table_t, id_hash, dict_sys->table_id_hash, ut_fold_ull(table->id), table); } /**********************************************************************//** Removes a table object from the dictionary cache. */ static void dict_table_remove_from_cache_low( dict_table_t* table, /*!< in, own: table */ ibool lru_evict) /*!< in: TRUE if table being evicted to make room in the table LRU list */ { dict_foreign_t* foreign; dict_index_t* index; lint size; ut_ad(table); ut_ad(dict_lru_validate()); ut_a(table->get_ref_count() == 0); ut_a(table->n_rec_locks == 0); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* We first dirty read the status which could be changed from METADATA_DIRTY to METADATA_BUFFERED by checkpoint, and check again when persistence is necessary */ switch (table->dirty_status) { case METADATA_DIRTY: /* Write back the dirty metadata to DDTableBuffer */ dict_table_persist_to_dd_table_buffer(table); ut_ad(table->dirty_status != METADATA_DIRTY); /* Fall through */ case METADATA_BUFFERED: /* We have to remove it away here, since it's evicted. And we will add it again once it's re-loaded if possible */ mutex_enter(&dict_persist->mutex); ut_ad(table->in_dirty_dict_tables_list); UT_LIST_REMOVE(dict_persist->dirty_dict_tables, table); mutex_exit(&dict_persist->mutex); break; case METADATA_CLEAN: break; } /* Remove the foreign constraints from the cache */ std::for_each(table->foreign_set.begin(), table->foreign_set.end(), dict_foreign_remove_partial()); table->foreign_set.clear(); /* Reset table field in referencing constraints */ for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; foreign->referenced_table = NULL; foreign->referenced_index = NULL; } /* Remove the indexes from the cache */ for (index = UT_LIST_GET_LAST(table->indexes); index != NULL; index = UT_LIST_GET_LAST(table->indexes)) { dict_index_remove_from_cache_low(table, index, lru_evict); } /* Remove table from the hash tables of tables */ HASH_DELETE(dict_table_t, name_hash, dict_sys->table_hash, ut_fold_string(table->name.m_name), table); HASH_DELETE(dict_table_t, id_hash, dict_sys->table_id_hash, ut_fold_ull(table->id), table); /* Remove table from LRU or non-LRU list. */ if (table->can_be_evicted) { ut_ad(dict_lru_find_table(table)); UT_LIST_REMOVE(dict_sys->table_LRU, table); } else { ut_ad(dict_non_lru_find_table(table)); UT_LIST_REMOVE(dict_sys->table_non_LRU, table); } ut_ad(dict_lru_validate()); if (lru_evict && table->drop_aborted) { /* Do as dict_table_try_drop_aborted() does. */ trx_t* trx = trx_allocate_for_background(); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); /* Mimic row_mysql_lock_data_dictionary(). */ trx->dict_operation_lock_mode = RW_X_LATCH; trx_set_dict_operation(trx, TRX_DICT_OP_INDEX); /* Silence a debug assertion in row_merge_drop_indexes(). */ ut_d(table->acquire()); row_merge_drop_indexes(trx, table, TRUE); ut_d(table->release()); ut_ad(table->get_ref_count() == 0); trx_commit_for_mysql(trx); trx->dict_operation_lock_mode = 0; trx_free_for_background(trx); } /* Free virtual column template if any */ if (table->vc_templ != NULL) { dict_free_vc_templ(table->vc_templ); UT_DELETE(table->vc_templ); } size = mem_heap_get_size(table->heap) + strlen(table->name.m_name) + 1; ut_ad(dict_sys->size >= size); dict_sys->size -= size; dict_mem_table_free(table); } /**********************************************************************//** Removes a table object from the dictionary cache. */ void dict_table_remove_from_cache( /*=========================*/ dict_table_t* table) /*!< in, own: table */ { dict_table_remove_from_cache_low(table, FALSE); } #ifdef UNIV_DEBUG /** Removes a table object from the dictionary cache, for debug purpose @param[in,out] table table object @param[in] lru_evict true if table being evicted to make room in the table LRU list */ void dict_table_remove_from_cache_debug( dict_table_t* table, bool lru_evict) { dict_table_remove_from_cache_low(table, lru_evict); } #endif /* UNIV_DEBUG */ /****************************************************************//** If the given column name is reserved for InnoDB system columns, return TRUE. @return TRUE if name is reserved */ ibool dict_col_name_is_reserved( /*======================*/ const char* name) /*!< in: column name */ { /* This check reminds that if a new system column is added to the program, it should be dealt with here. */ #if DATA_N_SYS_COLS != 3 #error "DATA_N_SYS_COLS != 3" #endif static const char* reserved_names[] = { "DB_ROW_ID", "DB_TRX_ID", "DB_ROLL_PTR" }; ulint i; for (i = 0; i < UT_ARR_SIZE(reserved_names); i++) { if (innobase_strcasecmp(name, reserved_names[i]) == 0) { return(TRUE); } } return(FALSE); } /****************************************************************//** Return maximum size of the node pointer record. @return maximum size of the record in bytes */ ulint dict_index_node_ptr_max_size( /*=========================*/ const dict_index_t* index) /*!< in: index */ { ulint comp; ulint i; /* maximum possible storage size of a record */ ulint rec_max_size; if (dict_index_is_ibuf(index)) { /* cannot estimate accurately */ /* This is universal index for change buffer. The max size of the entry is about max key length * 2. (index key + primary key to be inserted to the index) (The max key length is UNIV_PAGE_SIZE / 16 * 3 at ha_innobase::max_supported_key_length(), considering MAX_KEY_LENGTH = 3072 at MySQL imposes the 3500 historical InnoDB value for 16K page size case.) For the universal index, node_ptr contains most of the entry. And 512 is enough to contain ibuf columns and meta-data */ return(UNIV_PAGE_SIZE / 8 * 3 + 512); } comp = dict_table_is_comp(index->table); /* Each record has page_no, length of page_no and header. */ rec_max_size = comp ? REC_NODE_PTR_SIZE + 1 + REC_N_NEW_EXTRA_BYTES : REC_NODE_PTR_SIZE + 2 + REC_N_OLD_EXTRA_BYTES; if (comp) { /* Include the "null" flags in the maximum possible record size. */ rec_max_size += UT_BITS_IN_BYTES(index->n_nullable); } else { /* For each column, include a 2-byte offset and a "null" flag. */ rec_max_size += 2 * index->n_fields; } /* Compute the maximum possible record size. */ for (i = 0; i < dict_index_get_n_unique_in_tree(index); i++) { const dict_field_t* field = index->get_field(i); const dict_col_t* col = field->col; ulint field_max_size; ulint field_ext_max_size; /* Determine the maximum length of the index field. */ field_max_size = col->get_fixed_size(comp); if (field_max_size) { /* dict_index_add_col() should guarantee this */ ut_ad(!field->prefix_len || field->fixed_len == field->prefix_len); /* Fixed lengths are not encoded in ROW_FORMAT=COMPACT. */ rec_max_size += field_max_size; continue; } field_max_size = col->get_max_size(); field_ext_max_size = field_max_size < 256 ? 1 : 2; if (field->prefix_len && field->prefix_len < field_max_size) { field_max_size = field->prefix_len; } if (comp) { /* Add the extra size for ROW_FORMAT=COMPACT. For ROW_FORMAT=REDUNDANT, these bytes were added to rec_max_size before this loop. */ rec_max_size += field_ext_max_size; } rec_max_size += field_max_size; } return(rec_max_size); } /****************************************************************//** If a record of this index might not fit on a single B-tree page, return TRUE. @return TRUE if the index record could become too big */ static bool dict_index_too_big_for_tree( /*========================*/ const dict_table_t* table, /*!< in: table */ const dict_index_t* new_index, /*!< in: index */ bool strict) /*!< in: TRUE=report error if records could be too big to fit in an B-tree page */ { ulint comp; ulint i; /* maximum possible storage size of a record */ ulint rec_max_size; /* maximum allowed size of a record on a leaf page */ ulint page_rec_max; /* maximum allowed size of a node pointer record */ ulint page_ptr_max; /* FTS index consists of auxiliary tables, they shall be excluded from index row size check */ if (new_index->type & DICT_FTS) { return(false); } DBUG_EXECUTE_IF( "ib_force_create_table", return(FALSE);); comp = dict_table_is_comp(table); const page_size_t page_size(dict_table_page_size(table)); if (page_size.is_compressed() && page_size.physical() < univ_page_size.physical()) { /* On a compressed page, two records must fit in the uncompressed page modification log. On compressed pages with size.physical() == univ_page_size.physical(), this limit will never be reached. */ ut_ad(comp); /* The maximum allowed record size is the size of an empty page, minus a byte for recoding the heap number in the page modification log. The maximum allowed node pointer size is half that. */ page_rec_max = page_zip_empty_size(new_index->n_fields, page_size.physical()); if (page_rec_max) { page_rec_max--; } page_ptr_max = page_rec_max / 2; /* On a compressed page, there is a two-byte entry in the dense page directory for every record. But there is no record header. */ rec_max_size = 2; } else { /* The maximum allowed record size is half a B-tree page(16k for 64k page size). No additional sparse page directory entry will be generated for the first few user records. */ page_rec_max = srv_page_size == UNIV_PAGE_SIZE_MAX ? REC_MAX_DATA_SIZE - 1 : page_get_free_space_of_empty(comp) / 2; page_ptr_max = page_rec_max; /* Each record has a header. */ rec_max_size = comp ? REC_N_NEW_EXTRA_BYTES : REC_N_OLD_EXTRA_BYTES; } if (comp) { /* Include the "null" flags in the maximum possible record size. */ rec_max_size += UT_BITS_IN_BYTES(new_index->n_nullable); } else { /* For each column, include a 2-byte offset and a "null" flag. The 1-byte format is only used in short records that do not contain externally stored columns. Such records could never exceed the page limit, even when using the 2-byte format. */ rec_max_size += 2 * new_index->n_fields; } /* Compute the maximum possible record size. */ for (i = 0; i < new_index->n_fields; i++) { const dict_field_t* field = new_index->get_field(i); const dict_col_t* col = field->col; ulint field_max_size; ulint field_ext_max_size; /* In dtuple_convert_big_rec(), variable-length columns that are longer than BTR_EXTERN_LOCAL_STORED_MAX_SIZE may be chosen for external storage. Fixed-length columns, and all columns of secondary index records are always stored inline. */ /* Determine the maximum length of the index field. The field_ext_max_size should be computed as the worst case in rec_get_converted_size_comp() for REC_STATUS_ORDINARY records. */ field_max_size = col->get_fixed_size(comp); if (field_max_size && field->fixed_len != 0) { /* dict_index_add_col() should guarantee this */ ut_ad(!field->prefix_len || field->fixed_len == field->prefix_len); /* Fixed lengths are not encoded in ROW_FORMAT=COMPACT. */ field_ext_max_size = 0; goto add_field_size; } field_max_size = col->get_max_size(); field_ext_max_size = field_max_size < 256 ? 1 : 2; if (field->prefix_len) { if (field->prefix_len < field_max_size) { field_max_size = field->prefix_len; } } else if (field_max_size > BTR_EXTERN_LOCAL_STORED_MAX_SIZE && new_index->is_clustered()) { /* In the worst case, we have a locally stored column of BTR_EXTERN_LOCAL_STORED_MAX_SIZE bytes. The length can be stored in one byte. If the column were stored externally, the lengths in the clustered index page would be BTR_EXTERN_FIELD_REF_SIZE and 2. */ field_max_size = BTR_EXTERN_LOCAL_STORED_MAX_SIZE; field_ext_max_size = 1; } if (comp) { /* Add the extra size for ROW_FORMAT=COMPACT. For ROW_FORMAT=REDUNDANT, these bytes were added to rec_max_size before this loop. */ rec_max_size += field_ext_max_size; } add_field_size: rec_max_size += field_max_size; /* Check the size limit on leaf pages. */ if (rec_max_size >= page_rec_max) { ib::error_or_warn(strict) << "Cannot add field " << field->name << " in table " << table->name << " because after adding it, the row size is " << rec_max_size << " which is greater than maximum allowed" " size (" << page_rec_max << ") for a record on index leaf page."; return(true); } /* Check the size limit on non-leaf pages. Records stored in non-leaf B-tree pages consist of the unique columns of the record (the key columns of the B-tree) and a node pointer field. When we have processed the unique columns, rec_max_size equals the size of the node pointer record minus the node pointer column. */ if (i + 1 == dict_index_get_n_unique_in_tree(new_index) && rec_max_size + REC_NODE_PTR_SIZE >= page_ptr_max) { return(true); } } return(false); } /** Adds an index to the dictionary cache. @param[in,out] table table on which the index is @param[in,out] index index; NOTE! The index memory object is freed in this function! @param[in] page_no root page number of the index @param[in] strict TRUE=refuse to create the index if records could be too big to fit in an B-tree page @return DB_SUCCESS, DB_TOO_BIG_RECORD, or DB_CORRUPTION */ dberr_t dict_index_add_to_cache( dict_table_t* table, dict_index_t* index, page_no_t page_no, ibool strict) { return(dict_index_add_to_cache_w_vcol( table, index, NULL, page_no, strict)); } /** Adds an index to the dictionary cache, with possible indexing newly added column. @param[in,out] table table on which the index is @param[in,out] index index; NOTE! The index memory object is freed in this function! @param[in] add_v new virtual column that being added along with an add index call @param[in] page_no root page number of the index @param[in] strict TRUE=refuse to create the index if records could be too big to fit in an B-tree page @return DB_SUCCESS, DB_TOO_BIG_RECORD, or DB_CORRUPTION */ dberr_t dict_index_add_to_cache_w_vcol( dict_table_t* table, dict_index_t* index, const dict_add_v_col_t* add_v, page_no_t page_no, ibool strict) { dict_index_t* new_index; ulint n_ord; ulint i; ut_ad(index); ut_ad(mutex_own(&dict_sys->mutex) || table->is_intrinsic()); ut_ad(index->n_def == index->n_fields); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); ut_ad(!dict_index_is_online_ddl(index)); ut_ad(!dict_index_is_ibuf(index)); ut_d(mem_heap_validate(index->heap)); ut_a(!index->is_clustered() || UT_LIST_GET_LEN(table->indexes) == 0); if (!dict_index_find_cols(table, index, add_v)) { dict_mem_index_free(index); return(DB_CORRUPTION); } /* Build the cache internal representation of the index, containing also the added system fields */ if (index->type == DICT_FTS) { new_index = dict_index_build_internal_fts(table, index); } else if (index->is_clustered()) { new_index = dict_index_build_internal_clust(table, index); } else { new_index = dict_index_build_internal_non_clust(table, index); } /* Set the n_fields value in new_index to the actual defined number of fields in the cache internal representation */ new_index->n_fields = new_index->n_def; new_index->trx_id = index->trx_id; new_index->set_committed(index->is_committed()); new_index->allow_duplicates = index->allow_duplicates; new_index->nulls_equal = index->nulls_equal; new_index->disable_ahi = index->disable_ahi; if (dict_index_too_big_for_tree(table, new_index, strict)) { if (strict) { dict_mem_index_free(new_index); dict_mem_index_free(index); return(DB_TOO_BIG_RECORD); } else if (current_thd != NULL) { /* Avoid the warning to be printed during recovery. */ ib_warn_row_too_big(table); } } n_ord = new_index->n_uniq; /* Flag the ordering columns and also set column max_prefix */ for (i = 0; i < n_ord; i++) { const dict_field_t* field = new_index->get_field(i); /* Check the column being added in the index for the first time and flag the ordering column. */ if (field->col->ord_part == 0 ) { field->col->max_prefix = field->prefix_len; field->col->ord_part = 1; } else if (field->prefix_len == 0) { /* Set the max_prefix for a column to 0 if its prefix length is 0 (for this index) even if it was a part of any other index with some prefix length. */ field->col->max_prefix = 0; } else if (field->col->max_prefix != 0 && field->prefix_len > field->col->max_prefix) { /* Set the max_prefix value based on the prefix_len. */ field->col->max_prefix = field->prefix_len; } ut_ad(field->col->ord_part == 1); } new_index->stat_n_diff_key_vals = static_cast<ib_uint64_t*>(mem_heap_zalloc( new_index->heap, dict_index_get_n_unique(new_index) * sizeof(*new_index->stat_n_diff_key_vals))); new_index->stat_n_sample_sizes = static_cast<ib_uint64_t*>(mem_heap_zalloc( new_index->heap, dict_index_get_n_unique(new_index) * sizeof(*new_index->stat_n_sample_sizes))); new_index->stat_n_non_null_key_vals = static_cast<ib_uint64_t*>(mem_heap_zalloc( new_index->heap, dict_index_get_n_unique(new_index) * sizeof(*new_index->stat_n_non_null_key_vals))); new_index->stat_index_size = 1; new_index->stat_n_leaf_pages = 1; /* Add the new index as the last index for the table */ UT_LIST_ADD_LAST(table->indexes, new_index); new_index->table = table; new_index->table_name = table->name.m_name; new_index->search_info = btr_search_info_create(new_index->heap); new_index->page = page_no; rw_lock_create(index_tree_rw_lock_key, &new_index->lock, SYNC_INDEX_TREE); /* Intrinsic table are not added to dictionary cache instead are cached to session specific thread cache. */ if (!table->is_intrinsic()) { dict_sys->size += mem_heap_get_size(new_index->heap); } /* Check if key part of the index is unique. */ if (table->is_intrinsic()) { new_index->rec_cache.fixed_len_key = true; for (i = 0; i < new_index->n_uniq; i++) { const dict_field_t* field; field = new_index->get_field(i); if (!field->fixed_len) { new_index->rec_cache.fixed_len_key = false; break; } } new_index->rec_cache.key_has_null_cols = false; for (i = 0; i < new_index->n_uniq; i++) { const dict_field_t* field; field = new_index->get_field(i); if (!(field->col->prtype & DATA_NOT_NULL)) { new_index->rec_cache.key_has_null_cols = true; break; } } } if (dict_index_has_virtual(index)) { const dict_col_t* col; const dict_v_col_t* vcol; for (ulint i = 0; i < dict_index_get_n_fields(index); i++) { col = index->get_col(i); if (col->is_virtual()) { vcol = reinterpret_cast<const dict_v_col_t*>( col); /* This could be NULL, when we do add virtual column, add index together. We do not need to track this virtual column's index */ if (vcol->v_indexes == NULL) { continue; } dict_v_idx_list::iterator it; for (it = vcol->v_indexes->begin(); it != vcol->v_indexes->end();) { dict_v_idx_t v_index = *it; if (v_index.index == index) { vcol->v_indexes->erase(it++); } else { it++; } } } } } dict_mem_index_free(index); return(DB_SUCCESS); } /**********************************************************************//** Removes an index from the dictionary cache. */ static void dict_index_remove_from_cache_low( /*=============================*/ dict_table_t* table, /*!< in/out: table */ dict_index_t* index, /*!< in, own: index */ ibool lru_evict) /*!< in: TRUE if index being evicted to make room in the table LRU list */ { lint size; ulint retries = 0; btr_search_t* info; ut_ad(table && index); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); ut_ad(mutex_own(&dict_sys->mutex)); /* No need to acquire the dict_index_t::lock here because there can't be any active operations on this index (or table). */ if (index->online_log) { ut_ad(index->online_status == ONLINE_INDEX_CREATION); row_log_free(index->online_log); } /* We always create search info whether or not adaptive hash index is enabled or not. */ info = btr_search_get_info(index); ut_ad(info); /* We are not allowed to free the in-memory index struct dict_index_t until all entries in the adaptive hash index that point to any of the page belonging to his b-tree index are dropped. This is so because dropping of these entries require access to dict_index_t struct. To avoid such scenario We keep a count of number of such pages in the search_info and only free the dict_index_t struct when this count drops to zero. See also: dict_table_can_be_evicted() */ do { ulint ref_count = btr_search_info_get_ref_count(info, index); if (ref_count == 0) { break; } /* Sleep for 10ms before trying again. */ os_thread_sleep(10000); ++retries; if (retries % 500 == 0) { /* No luck after 5 seconds of wait. */ ib::error() << "Waited for " << retries / 100 << " secs for hash index" " ref_count (" << ref_count << ") to drop to 0." " index: " << index->name << " table: " << table->name; } /* To avoid a hang here we commit suicide if the ref_count doesn't drop to zero in 600 seconds. */ if (retries >= 60000) { ut_error; } } while (srv_shutdown_state == SRV_SHUTDOWN_NONE || !lru_evict); rw_lock_free(&index->lock); /* The index is being dropped, remove any compression stats for it. */ if (!lru_evict && DICT_TF_GET_ZIP_SSIZE(index->table->flags) && !index->table->discard_after_ddl) { index_id_t id(index->space, index->id); mutex_enter(&page_zip_stat_per_index_mutex); page_zip_stat_per_index.erase(id); mutex_exit(&page_zip_stat_per_index_mutex); } /* Remove the index from the list of indexes of the table */ UT_LIST_REMOVE(table->indexes, index); /* Remove the index from affected virtual column index list */ if (dict_index_has_virtual(index)) { const dict_col_t* col; const dict_v_col_t* vcol; for (ulint i = 0; i < dict_index_get_n_fields(index); i++) { col = index->get_col(i); if (col->is_virtual()) { vcol = reinterpret_cast<const dict_v_col_t*>( col); /* This could be NULL, when we do add virtual column, add index together. We do not need to track this virtual column's index */ if (vcol->v_indexes == NULL) { continue; } dict_v_idx_list::iterator it; for (it = vcol->v_indexes->begin(); it != vcol->v_indexes->end(); ++it) { dict_v_idx_t v_index = *it; if (v_index.index == index) { vcol->v_indexes->erase(it); break; } } } } } size = mem_heap_get_size(index->heap); ut_ad(!table->is_intrinsic()); ut_ad(dict_sys->size >= size); dict_sys->size -= size; dict_mem_index_free(index); } /**********************************************************************//** Removes an index from the dictionary cache. */ void dict_index_remove_from_cache( /*=========================*/ dict_table_t* table, /*!< in/out: table */ dict_index_t* index) /*!< in, own: index */ { dict_index_remove_from_cache_low(table, index, FALSE); } /** Tries to find column names for the index and sets the col field of the index. @param[in] table table @param[in,out] index index @param[in] add_v new virtual columns added along with an add index call @return TRUE if the column names were found */ static ibool dict_index_find_cols( const dict_table_t* table, dict_index_t* index, const dict_add_v_col_t* add_v) { std::vector<ulint, ut_allocator<ulint> > col_added; std::vector<ulint, ut_allocator<ulint> > v_col_added; ut_ad(table != NULL && index != NULL); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(mutex_own(&dict_sys->mutex) || table->is_intrinsic()); for (ulint i = 0; i < index->n_fields; i++) { ulint j; dict_field_t* field = index->get_field(i); for (j = 0; j < table->n_cols; j++) { if (!strcmp(table->get_col_name(j), field->name)) { /* Check if same column is being assigned again which suggest that column has duplicate name. */ bool exists = std::find(col_added.begin(), col_added.end(), j) != col_added.end(); if (exists) { /* Duplicate column found. */ goto dup_err; } field->col = table->get_col(j); col_added.push_back(j); goto found; } } /* Let's check if it is a virtual column */ for (j = 0; j < table->n_v_cols; j++) { if (!strcmp(dict_table_get_v_col_name(table, j), field->name)) { /* Check if same column is being assigned again which suggest that column has duplicate name. */ bool exists = std::find(v_col_added.begin(), v_col_added.end(), j) != v_col_added.end(); if (exists) { /* Duplicate column found. */ break; } field->col = reinterpret_cast<dict_col_t*>( dict_table_get_nth_v_col(table, j)); v_col_added.push_back(j); goto found; } } if (add_v) { for (j = 0; j < add_v->n_v_col; j++) { if (!strcmp(add_v->v_col_name[j], field->name)) { field->col = const_cast<dict_col_t*>( &add_v->v_col[j].m_col); goto found; } } } dup_err: #ifdef UNIV_DEBUG /* It is an error not to find a matching column. */ ib::error() << "No matching column for " << field->name << " in index " << index->name << " of table " << table->name; #endif /* UNIV_DEBUG */ return(FALSE); found: ; } return(TRUE); } /*******************************************************************//** Copies fields contained in index2 to index1. */ static void dict_index_copy( /*============*/ dict_index_t* index1, /*!< in: index to copy to */ dict_index_t* index2, /*!< in: index to copy from */ const dict_table_t* table, /*!< in: table */ ulint start, /*!< in: first position to copy */ ulint end) /*!< in: last position to copy */ { dict_field_t* field; ulint i; /* Copy fields contained in index2 */ for (i = start; i < end; i++) { field = index2->get_field(i); dict_index_add_col(index1, table, field->col, field->prefix_len, field->is_ascending); } } /*******************************************************************//** Copies types of fields contained in index to tuple. */ void dict_index_copy_types( /*==================*/ dtuple_t* tuple, /*!< in/out: data tuple */ const dict_index_t* index, /*!< in: index */ ulint n_fields) /*!< in: number of field types to copy */ { ulint i; if (dict_index_is_ibuf(index)) { dtuple_set_types_binary(tuple, n_fields); return; } for (i = 0; i < n_fields; i++) { const dict_field_t* ifield; dtype_t* dfield_type; ifield = index->get_field(i); dfield_type = dfield_get_type(dtuple_get_nth_field(tuple, i)); ifield->col->copy_type(dfield_type); if (dict_index_is_spatial(index) && DATA_GEOMETRY_MTYPE(dfield_type->mtype)) { dfield_type->prtype |= DATA_GIS_MBR; } } } /** Copies types of virtual columns contained in table to tuple and sets all fields of the tuple to the SQL NULL value. This function should be called right after dtuple_create(). @param[in,out] tuple data tuple @param[in] table table */ void dict_table_copy_v_types( dtuple_t* tuple, const dict_table_t* table) { /* tuple could have more virtual columns than existing table, if we are calling this for creating index along with adding virtual columns */ ulint n_fields = ut_min(dtuple_get_n_v_fields(tuple), static_cast<ulint>(table->n_v_def)); for (ulint i = 0; i < n_fields; i++) { dfield_t* dfield = dtuple_get_nth_v_field(tuple, i); dtype_t* dtype = dfield_get_type(dfield); dfield_set_null(dfield); dict_table_get_nth_v_col(table, i)->m_col.copy_type(dtype); } } /*******************************************************************//** Copies types of columns contained in table to tuple and sets all fields of the tuple to the SQL NULL value. This function should be called right after dtuple_create(). */ void dict_table_copy_types( /*==================*/ dtuple_t* tuple, /*!< in/out: data tuple */ const dict_table_t* table) /*!< in: table */ { ulint i; for (i = 0; i < dtuple_get_n_fields(tuple); i++) { dfield_t* dfield = dtuple_get_nth_field(tuple, i); dtype_t* dtype = dfield_get_type(dfield); dfield_set_null(dfield); table->get_col(i)->copy_type(dtype); } dict_table_copy_v_types(tuple, table); } /******************************************************************** Wait until all the background threads of the given table have exited, i.e., bg_threads == 0. Note: bg_threads_mutex must be reserved when calling this. */ void dict_table_wait_for_bg_threads_to_exit( /*===================================*/ dict_table_t* table, /*!< in: table */ ulint delay) /*!< in: time in microseconds to wait between checks of bg_threads. */ { fts_t* fts = table->fts; ut_ad(mutex_own(&fts->bg_threads_mutex)); while (fts->bg_threads > 0) { mutex_exit(&fts->bg_threads_mutex); os_thread_sleep(delay); mutex_enter(&fts->bg_threads_mutex); } } /*******************************************************************//** Builds the internal dictionary cache representation for a clustered index, containing also system fields not defined by the user. @return own: the internal representation of the clustered index */ static dict_index_t* dict_index_build_internal_clust( /*============================*/ const dict_table_t* table, /*!< in: table */ dict_index_t* index) /*!< in: user representation of a clustered index */ { dict_index_t* new_index; dict_field_t* field; ulint trx_id_pos; ulint i; ibool* indexed; ut_ad(table && index); ut_ad(index->is_clustered()); ut_ad(!dict_index_is_ibuf(index)); ut_ad(mutex_own(&dict_sys->mutex) || table->is_intrinsic()); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* Create a new index object with certainly enough fields */ new_index = dict_mem_index_create(table->name.m_name, index->name, table->space, index->type, index->n_fields + table->n_cols); /* Copy other relevant data from the old index struct to the new struct: it inherits the values */ new_index->n_user_defined_cols = index->n_fields; new_index->id = index->id; /* Copy the fields of index */ dict_index_copy(new_index, index, table, 0, index->n_fields); if (dict_index_is_unique(index)) { /* Only the fields defined so far are needed to identify the index entry uniquely */ new_index->n_uniq = new_index->n_def; } else { /* Also the row id is needed to identify the entry */ new_index->n_uniq = 1 + new_index->n_def; } new_index->trx_id_offset = 0; /* Add system columns, trx id first */ trx_id_pos = new_index->n_def; #if DATA_ROW_ID != 0 # error "DATA_ROW_ID != 0" #endif #if DATA_TRX_ID != 1 # error "DATA_TRX_ID != 1" #endif #if DATA_ROLL_PTR != 2 # error "DATA_ROLL_PTR != 2" #endif if (!dict_index_is_unique(index)) { dict_index_add_col(new_index, table, table->get_sys_col(DATA_ROW_ID), 0, true); trx_id_pos++; } dict_index_add_col( new_index, table, table->get_sys_col(DATA_TRX_ID), 0, true); for (i = 0; i < trx_id_pos; i++) { ulint fixed_size = new_index->get_col(i)->get_fixed_size( dict_table_is_comp(table)); if (fixed_size == 0) { new_index->trx_id_offset = 0; break; } dict_field_t* field = new_index->get_field(i); if (field->prefix_len > 0) { new_index->trx_id_offset = 0; break; } /* Add fixed_size to new_index->trx_id_offset. Because the latter is a bit-field, an overflow can theoretically occur. Check for it. */ fixed_size += new_index->trx_id_offset; new_index->trx_id_offset = fixed_size; if (new_index->trx_id_offset != fixed_size) { /* Overflow. Pretend that this is a variable-length PRIMARY KEY. */ ut_ad(0); new_index->trx_id_offset = 0; break; } } /* UNDO logging is turned-off for intrinsic table and so DATA_ROLL_PTR system columns are not added as default system columns to such tables. */ if (!table->is_intrinsic()) { dict_index_add_col( new_index, table, table->get_sys_col(DATA_ROLL_PTR), 0, true); } /* Remember the table columns already contained in new_index */ indexed = static_cast<ibool*>( ut_zalloc_nokey(table->n_cols * sizeof *indexed)); /* Mark the table columns already contained in new_index */ for (i = 0; i < new_index->n_def; i++) { field = new_index->get_field(i); /* If there is only a prefix of the column in the index field, do not mark the column as contained in the index */ if (field->prefix_len == 0) { indexed[field->col->ind] = TRUE; } } /* Add to new_index non-system columns of table not yet included there */ ulint n_sys_cols = table->get_n_sys_cols(); for (i = 0; i + n_sys_cols < (ulint) table->n_cols; i++) { dict_col_t* col = table->get_col(i); ut_ad(col->mtype != DATA_SYS); if (!indexed[col->ind]) { dict_index_add_col(new_index, table, col, 0, true); } } ut_free(indexed); ut_ad(UT_LIST_GET_LEN(table->indexes) == 0); new_index->cached = TRUE; return(new_index); } /*******************************************************************//** Builds the internal dictionary cache representation for a non-clustered index, containing also system fields not defined by the user. @return own: the internal representation of the non-clustered index */ static dict_index_t* dict_index_build_internal_non_clust( /*================================*/ const dict_table_t* table, /*!< in: table */ dict_index_t* index) /*!< in: user representation of a non-clustered index */ { dict_field_t* field; dict_index_t* new_index; dict_index_t* clust_index; ulint i; ibool* indexed; ut_ad(table && index); ut_ad(!index->is_clustered()); ut_ad(!dict_index_is_ibuf(index)); ut_ad(mutex_own(&dict_sys->mutex) || table->is_intrinsic()); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* The clustered index should be the first in the list of indexes */ clust_index = UT_LIST_GET_FIRST(table->indexes); ut_ad(clust_index); ut_ad(clust_index->is_clustered()); ut_ad(!dict_index_is_ibuf(clust_index)); /* Create a new index */ new_index = dict_mem_index_create( table->name.m_name, index->name, index->space, index->type, index->n_fields + 1 + clust_index->n_uniq); /* Copy other relevant data from the old index struct to the new struct: it inherits the values */ new_index->n_user_defined_cols = index->n_fields; new_index->id = index->id; /* Copy fields from index to new_index */ dict_index_copy(new_index, index, table, 0, index->n_fields); /* Remember the table columns already contained in new_index */ indexed = static_cast<ibool*>( ut_zalloc_nokey(table->n_cols * sizeof *indexed)); /* Mark the table columns already contained in new_index */ for (i = 0; i < new_index->n_def; i++) { field = new_index->get_field(i); if (field->col->is_virtual()) { continue; } /* If there is only a prefix of the column in the index field, do not mark the column as contained in the index */ if (field->prefix_len == 0) { indexed[field->col->ind] = TRUE; } } /* Add to new_index the columns necessary to determine the clustered index entry uniquely */ for (i = 0; i < clust_index->n_uniq; i++) { field = clust_index->get_field(i); if (!indexed[field->col->ind]) { dict_index_add_col(new_index, table, field->col, field->prefix_len, field->is_ascending); } else if (dict_index_is_spatial(index)) { /*For spatial index, we still need to add the field to index. */ dict_index_add_col(new_index, table, field->col, field->prefix_len, field->is_ascending); } } ut_free(indexed); if (dict_index_is_unique(index)) { new_index->n_uniq = index->n_fields; } else { new_index->n_uniq = new_index->n_def; } /* Set the n_fields value in new_index to the actual defined number of fields */ new_index->n_fields = new_index->n_def; new_index->cached = TRUE; return(new_index); } /*********************************************************************** Builds the internal dictionary cache representation for an FTS index. @return own: the internal representation of the FTS index */ static dict_index_t* dict_index_build_internal_fts( /*==========================*/ dict_table_t* table, /*!< in: table */ dict_index_t* index) /*!< in: user representation of an FTS index */ { dict_index_t* new_index; ut_ad(table && index); ut_ad(index->type == DICT_FTS); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* Create a new index */ new_index = dict_mem_index_create( table->name.m_name, index->name, index->space, index->type, index->n_fields); /* Copy other relevant data from the old index struct to the new struct: it inherits the values */ new_index->n_user_defined_cols = index->n_fields; new_index->id = index->id; /* Copy fields from index to new_index */ dict_index_copy(new_index, index, table, 0, index->n_fields); new_index->n_uniq = 0; new_index->cached = TRUE; if (table->fts->cache == NULL) { table->fts->cache = fts_cache_create(table); } rw_lock_x_lock(&table->fts->cache->init_lock); /* Notify the FTS cache about this index. */ fts_cache_index_cache_create(table, new_index); rw_lock_x_unlock(&table->fts->cache->init_lock); return(new_index); } /*====================== FOREIGN KEY PROCESSING ========================*/ /*********************************************************************//** Checks if a table is referenced by foreign keys. @return TRUE if table is referenced by a foreign key */ ibool dict_table_is_referenced_by_foreign_key( /*====================================*/ const dict_table_t* table) /*!< in: InnoDB table */ { return(!table->referenced_set.empty()); } /**********************************************************************//** Removes a foreign constraint struct from the dictionary cache. */ void dict_foreign_remove_from_cache( /*===========================*/ dict_foreign_t* foreign) /*!< in, own: foreign constraint */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_a(foreign); if (foreign->referenced_table != NULL) { foreign->referenced_table->referenced_set.erase(foreign); } if (foreign->foreign_table != NULL) { foreign->foreign_table->foreign_set.erase(foreign); } dict_foreign_free(foreign); } /**********************************************************************//** Looks for the foreign constraint from the foreign and referenced lists of a table. @return foreign constraint */ static dict_foreign_t* dict_foreign_find( /*==============*/ dict_table_t* table, /*!< in: table object */ dict_foreign_t* foreign) /*!< in: foreign constraint */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(dict_foreign_set_validate(table->foreign_set)); ut_ad(dict_foreign_set_validate(table->referenced_set)); dict_foreign_set::iterator it = table->foreign_set.find(foreign); if (it != table->foreign_set.end()) { return(*it); } it = table->referenced_set.find(foreign); if (it != table->referenced_set.end()) { return(*it); } return(NULL); } /*********************************************************************//** Tries to find an index whose first fields are the columns in the array, in the same order and is not marked for deletion and is not the same as types_idx. @return matching index, NULL if not found */ dict_index_t* dict_foreign_find_index( /*====================*/ const dict_table_t* table, /*!< in: table */ const char** col_names, /*!< in: column names, or NULL to use table->col_names */ const char** columns,/*!< in: array of column names */ ulint n_cols, /*!< in: number of columns */ const dict_index_t* types_idx, /*!< in: NULL or an index whose types the column types must match */ bool check_charsets, /*!< in: whether to check charsets. only has an effect if types_idx != NULL */ ulint check_null) /*!< in: nonzero if none of the columns must be declared NOT NULL */ { const dict_index_t* index; ut_ad(mutex_own(&dict_sys->mutex)); index = table->first_index(); while (index != NULL) { if (types_idx != index && !(index->type & DICT_FTS) && !dict_index_is_spatial(index) && !index->to_be_dropped && dict_foreign_qualify_index( table, col_names, columns, n_cols, index, types_idx, check_charsets, check_null)) { return const_cast<dict_index_t*>(index); } index = index->next(); } return(NULL); } /**********************************************************************//** Report an error in a foreign key definition. */ static void dict_foreign_error_report_low( /*==========================*/ FILE* file, /*!< in: output stream */ const char* name) /*!< in: table name */ { rewind(file); ut_print_timestamp(file); fprintf(file, " Error in foreign key constraint of table %s:\n", name); } /**********************************************************************//** Report an error in a foreign key definition. */ static void dict_foreign_error_report( /*======================*/ FILE* file, /*!< in: output stream */ dict_foreign_t* fk, /*!< in: foreign key constraint */ const char* msg) /*!< in: the error message */ { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(file, fk->foreign_table_name); fputs(msg, file); fputs(" Constraint:\n", file); dict_print_info_on_foreign_key_in_create_format(file, NULL, fk, TRUE); putc('\n', file); if (fk->foreign_index) { fprintf(file, "The index in the foreign key in table is" " %s\n%s\n", fk->foreign_index->name(), FOREIGN_KEY_CONSTRAINTS_MSG); } mutex_exit(&dict_foreign_err_mutex); } /**********************************************************************//** Adds a foreign key constraint object to the dictionary cache. May free the object if there already is an object with the same identifier in. At least one of the foreign table and the referenced table must already be in the dictionary cache! @return DB_SUCCESS or error code */ dberr_t dict_foreign_add_to_cache( /*======================*/ dict_foreign_t* foreign, /*!< in, own: foreign key constraint */ const char** col_names, /*!< in: column names, or NULL to use foreign->foreign_table->col_names */ bool check_charsets, /*!< in: whether to check charset compatibility */ bool can_free_fk, /*!< in: whether free existing FK */ dict_err_ignore_t ignore_err) /*!< in: error to be ignored */ { dict_table_t* for_table; dict_table_t* ref_table; dict_foreign_t* for_in_cache = NULL; dict_index_t* index; ibool added_to_referenced_list= FALSE; FILE* ef = dict_foreign_err_file; DBUG_ENTER("dict_foreign_add_to_cache"); DBUG_PRINT("dict_foreign_add_to_cache", ("id: %s", foreign->id)); ut_ad(mutex_own(&dict_sys->mutex)); for_table = dict_table_check_if_in_cache_low( foreign->foreign_table_name_lookup); ref_table = dict_table_check_if_in_cache_low( foreign->referenced_table_name_lookup); ut_a(for_table || ref_table); if (for_table) { for_in_cache = dict_foreign_find(for_table, foreign); } if (!for_in_cache && ref_table) { for_in_cache = dict_foreign_find(ref_table, foreign); } if (for_in_cache && for_in_cache != foreign) { /* Free the foreign object */ dict_foreign_free(foreign); } else { for_in_cache = foreign; } if (ref_table && !for_in_cache->referenced_table) { index = dict_foreign_find_index( ref_table, NULL, for_in_cache->referenced_col_names, for_in_cache->n_fields, for_in_cache->foreign_index, check_charsets, false); if (index == NULL && !(ignore_err & DICT_ERR_IGNORE_FK_NOKEY)) { dict_foreign_error_report( ef, for_in_cache, "there is no index in referenced table" " which would contain\n" "the columns as the first columns," " or the data types in the\n" "referenced table do not match" " the ones in table."); if (for_in_cache == foreign && can_free_fk) { mem_heap_free(foreign->heap); } DBUG_RETURN(DB_CANNOT_ADD_CONSTRAINT); } for_in_cache->referenced_table = ref_table; for_in_cache->referenced_index = index; std::pair<dict_foreign_set::iterator, bool> ret = ref_table->referenced_set.insert(for_in_cache); ut_a(ret.second); /* second is true if the insertion took place */ added_to_referenced_list = TRUE; } if (for_table && !for_in_cache->foreign_table) { index = dict_foreign_find_index( for_table, col_names, for_in_cache->foreign_col_names, for_in_cache->n_fields, for_in_cache->referenced_index, check_charsets, for_in_cache->type & (DICT_FOREIGN_ON_DELETE_SET_NULL | DICT_FOREIGN_ON_UPDATE_SET_NULL)); if (index == NULL && !(ignore_err & DICT_ERR_IGNORE_FK_NOKEY)) { dict_foreign_error_report( ef, for_in_cache, "there is no index in the table" " which would contain\n" "the columns as the first columns," " or the data types in the\n" "table do not match" " the ones in the referenced table\n" "or one of the ON ... SET NULL columns" " is declared NOT NULL."); if (for_in_cache == foreign) { if (added_to_referenced_list) { const dict_foreign_set::size_type n = ref_table->referenced_set .erase(for_in_cache); ut_a(n == 1); /* the number of elements removed must be one */ } mem_heap_free(foreign->heap); } DBUG_RETURN(DB_CANNOT_ADD_CONSTRAINT); } for_in_cache->foreign_table = for_table; for_in_cache->foreign_index = index; std::pair<dict_foreign_set::iterator, bool> ret = for_table->foreign_set.insert(for_in_cache); ut_a(ret.second); /* second is true if the insertion took place */ } /* We need to move the table to the non-LRU end of the table LRU list. Otherwise it will be evicted from the cache. */ if (ref_table != NULL) { dict_table_prevent_eviction(ref_table); } if (for_table != NULL) { dict_table_prevent_eviction(for_table); } ut_ad(dict_lru_validate()); DBUG_RETURN(DB_SUCCESS); } /*********************************************************************//** Scans from pointer onwards. Stops if is at the start of a copy of 'string' where characters are compared without case sensitivity, and only outside `` or "" quotes. Stops also at NUL. @return scanned up to this */ static const char* dict_scan_to( /*=========*/ const char* ptr, /*!< in: scan from */ const char* string) /*!< in: look for this */ { char quote = '\0'; bool escape = false; for (; *ptr; ptr++) { if (*ptr == quote) { /* Closing quote character: do not look for starting quote or the keyword. */ /* If the quote character is escaped by a backslash, ignore it. */ if (escape) { escape = false; } else { quote = '\0'; } } else if (quote) { /* Within quotes: do nothing. */ if (escape) { escape = false; } else if (*ptr == '\\') { escape = true; } } else if (*ptr == '`' || *ptr == '"' || *ptr == '\'') { /* Starting quote: remember the quote character. */ quote = *ptr; } else { /* Outside quotes: look for the keyword. */ ulint i; for (i = 0; string[i]; i++) { if (toupper((int)(unsigned char)(ptr[i])) != toupper((int)(unsigned char) (string[i]))) { goto nomatch; } } break; nomatch: ; } } return(ptr); } /*********************************************************************//** Accepts a specified string. Comparisons are case-insensitive. @return if string was accepted, the pointer is moved after that, else ptr is returned */ static const char* dict_accept( /*========*/ const CHARSET_INFO* cs, /*!< in: the character set of ptr */ const char* ptr, /*!< in: scan from this */ const char* string, /*!< in: accept only this string as the next non-whitespace string */ ibool* success)/*!< out: TRUE if accepted */ { const char* old_ptr = ptr; const char* old_ptr2; *success = FALSE; while (my_isspace(cs, *ptr)) { ptr++; } old_ptr2 = ptr; ptr = dict_scan_to(ptr, string); if (*ptr == '\0' || old_ptr2 != ptr) { return(old_ptr); } *success = TRUE; return(ptr + ut_strlen(string)); } /*********************************************************************//** Scans an id. For the lexical definition of an 'id', see the code below. Strips backquotes or double quotes from around the id. @return scanned to */ static const char* dict_scan_id( /*=========*/ const CHARSET_INFO* cs, /*!< in: the character set of ptr */ const char* ptr, /*!< in: scanned to */ mem_heap_t* heap, /*!< in: heap where to allocate the id (NULL=id will not be allocated, but it will point to string near ptr) */ const char** id, /*!< out,own: the id; NULL if no id was scannable */ ibool table_id,/*!< in: TRUE=convert the allocated id as a table name; FALSE=convert to UTF-8 */ ibool accept_also_dot) /*!< in: TRUE if also a dot can appear in a non-quoted id; in a quoted id it can appear always */ { char quote = '\0'; ulint len = 0; const char* s; char* str; char* dst; *id = NULL; while (my_isspace(cs, *ptr)) { ptr++; } if (*ptr == '\0') { return(ptr); } if (*ptr == '`' || *ptr == '"') { quote = *ptr++; } s = ptr; if (quote) { for (;;) { if (!*ptr) { /* Syntax error */ return(ptr); } if (*ptr == quote) { ptr++; if (*ptr != quote) { break; } } ptr++; len++; } } else { while (!my_isspace(cs, *ptr) && *ptr != '(' && *ptr != ')' && (accept_also_dot || *ptr != '.') && *ptr != ',' && *ptr != '\0') { ptr++; } len = ptr - s; } if (heap == NULL) { /* no heap given: id will point to source string */ *id = s; return(ptr); } if (quote) { char* d; str = d = static_cast<char*>( mem_heap_alloc(heap, len + 1)); while (len--) { if ((*d++ = *s++) == quote) { s++; } } *d++ = 0; len = d - str; ut_ad(*s == quote); ut_ad(s + 1 == ptr); } else { str = mem_heap_strdupl(heap, s, len); } if (!table_id) { /* Convert the identifier from connection character set to UTF-8. */ len = 3 * len + 1; *id = dst = static_cast<char*>(mem_heap_alloc(heap, len)); innobase_convert_from_id(cs, dst, str, len); } else { /* Encode using filename-safe characters. */ len = 5 * len + 1; *id = dst = static_cast<char*>(mem_heap_alloc(heap, len)); innobase_convert_from_table_id(cs, dst, str, len); } return(ptr); } /*********************************************************************//** Tries to scan a column name. @return scanned to */ static const char* dict_scan_col( /*==========*/ const CHARSET_INFO* cs, /*!< in: the character set of ptr */ const char* ptr, /*!< in: scanned to */ ibool* success,/*!< out: TRUE if success */ dict_table_t* table, /*!< in: table in which the column is */ const dict_col_t** column, /*!< out: pointer to column if success */ mem_heap_t* heap, /*!< in: heap where to allocate */ const char** name) /*!< out,own: the column name; NULL if no name was scannable */ { ulint i; *success = FALSE; ptr = dict_scan_id(cs, ptr, heap, name, FALSE, TRUE); if (*name == NULL) { return(ptr); /* Syntax error */ } if (table == NULL) { *success = TRUE; *column = NULL; } else { for (i = 0; i < table->get_n_cols(); i++) { const char* col_name = table->get_col_name(i); if (0 == innobase_strcasecmp(col_name, *name)) { /* Found */ *success = TRUE; *column = table->get_col(i); strcpy((char*) *name, col_name); break; } } } return(ptr); } /*********************************************************************//** Open a table from its database and table name, this is currently used by foreign constraint parser to get the referenced table. @return complete table name with database and table name, allocated from heap memory passed in */ char* dict_get_referenced_table( /*======================*/ const char* name, /*!< in: foreign key table name */ const char* database_name, /*!< in: table db name */ ulint database_name_len, /*!< in: db name length */ const char* table_name, /*!< in: table name */ ulint table_name_len, /*!< in: table name length */ dict_table_t** table, /*!< out: table object or NULL */ mem_heap_t* heap) /*!< in/out: heap memory */ { char* ref; const char* db_name; if (!database_name) { /* Use the database name of the foreign key table */ db_name = name; database_name_len = dict_get_db_name_len(name); } else { db_name = database_name; } /* Copy database_name, '/', table_name, '\0' */ ref = static_cast<char*>( mem_heap_alloc(heap, database_name_len + table_name_len + 2)); memcpy(ref, db_name, database_name_len); ref[database_name_len] = '/'; memcpy(ref + database_name_len + 1, table_name, table_name_len + 1); /* Values; 0 = Store and compare as given; case sensitive 1 = Store and compare in lower; case insensitive 2 = Store as given, compare in lower; case semi-sensitive */ if (innobase_get_lower_case_table_names() == 2) { innobase_casedn_str(ref); *table = dict_table_get_low(ref); memcpy(ref, db_name, database_name_len); ref[database_name_len] = '/'; memcpy(ref + database_name_len + 1, table_name, table_name_len + 1); } else { #ifndef _WIN32 if (innobase_get_lower_case_table_names() == 1) { innobase_casedn_str(ref); } #else innobase_casedn_str(ref); #endif /* !_WIN32 */ *table = dict_table_get_low(ref); } return(ref); } /*********************************************************************//** Scans a table name from an SQL string. @return scanned to */ static const char* dict_scan_table_name( /*=================*/ const CHARSET_INFO* cs, /*!< in: the character set of ptr */ const char* ptr, /*!< in: scanned to */ dict_table_t** table, /*!< out: table object or NULL */ const char* name, /*!< in: foreign key table name */ ibool* success,/*!< out: TRUE if ok name found */ mem_heap_t* heap, /*!< in: heap where to allocate the id */ const char** ref_name)/*!< out,own: the table name; NULL if no name was scannable */ { const char* database_name = NULL; ulint database_name_len = 0; const char* table_name = NULL; const char* scan_name; *success = FALSE; *table = NULL; ptr = dict_scan_id(cs, ptr, heap, &scan_name, TRUE, FALSE); if (scan_name == NULL) { return(ptr); /* Syntax error */ } if (*ptr == '.') { /* We scanned the database name; scan also the table name */ ptr++; database_name = scan_name; database_name_len = strlen(database_name); ptr = dict_scan_id(cs, ptr, heap, &table_name, TRUE, FALSE); if (table_name == NULL) { return(ptr); /* Syntax error */ } } else { /* To be able to read table dumps made with InnoDB-4.0.17 or earlier, we must allow the dot separator between the database name and the table name also to appear within a quoted identifier! InnoDB used to print a constraint as: ... REFERENCES `databasename.tablename` ... starting from 4.0.18 it is ... REFERENCES `databasename`.`tablename` ... */ const char* s; for (s = scan_name; *s; s++) { if (*s == '.') { database_name = scan_name; database_name_len = s - scan_name; scan_name = ++s; break;/* to do: multiple dots? */ } } table_name = scan_name; } *ref_name = dict_get_referenced_table( name, database_name, database_name_len, table_name, strlen(table_name), table, heap); *success = TRUE; return(ptr); } /*********************************************************************//** Skips one id. The id is allowed to contain also '.'. @return scanned to */ static const char* dict_skip_word( /*===========*/ const CHARSET_INFO* cs, /*!< in: the character set of ptr */ const char* ptr, /*!< in: scanned to */ ibool* success)/*!< out: TRUE if success, FALSE if just spaces left in string or a syntax error */ { const char* start; *success = FALSE; ptr = dict_scan_id(cs, ptr, NULL, &start, FALSE, TRUE); if (start) { *success = TRUE; } return(ptr); } /*********************************************************************//** Removes MySQL comments from an SQL string. A comment is either (a) '#' to the end of the line, (b) '--[space]' to the end of the line, or (c) '[slash][asterisk]' till the next '[asterisk][slash]' (like the familiar C comment syntax). @return own: SQL string stripped from comments; the caller must free this with ut_free()! */ static char* dict_strip_comments( /*================*/ const char* sql_string, /*!< in: SQL string */ size_t sql_length) /*!< in: length of sql_string */ { char* str; const char* sptr; const char* eptr = sql_string + sql_length; char* ptr; /* unclosed quote character (0 if none) */ char quote = 0; bool escape = false; DBUG_ENTER("dict_strip_comments"); DBUG_PRINT("dict_strip_comments", ("%s", sql_string)); str = static_cast<char*>(ut_malloc_nokey(sql_length + 1)); sptr = sql_string; ptr = str; for (;;) { scan_more: if (sptr >= eptr || *sptr == '\0') { end_of_string: *ptr = '\0'; ut_a(ptr <= str + sql_length); DBUG_PRINT("dict_strip_comments", ("%s", str)); DBUG_RETURN(str); } if (*sptr == quote) { /* Closing quote character: do not look for starting quote or comments. */ /* If the quote character is escaped by a backslash, ignore it. */ if (escape) { escape = false; } else { quote = 0; } } else if (quote) { /* Within quotes: do not look for starting quotes or comments. */ if (escape) { escape = false; } else if (*sptr == '\\') { escape = true; } } else if (*sptr == '"' || *sptr == '`' || *sptr == '\'') { /* Starting quote: remember the quote character. */ quote = *sptr; } else if (*sptr == '#' || (sptr[0] == '-' && sptr[1] == '-' && sptr[2] == ' ')) { for (;;) { if (++sptr >= eptr) { goto end_of_string; } /* In Unix a newline is 0x0A while in Windows it is 0x0D followed by 0x0A */ switch (*sptr) { case (char) 0X0A: case (char) 0x0D: case '\0': goto scan_more; } } } else if (!quote && *sptr == '/' && *(sptr + 1) == '*') { sptr += 2; for (;;) { if (sptr >= eptr) { goto end_of_string; } switch (*sptr) { case '\0': goto scan_more; case '*': if (sptr[1] == '/') { sptr += 2; goto scan_more; } } sptr++; } } *ptr = *sptr; ptr++; sptr++; } } /*********************************************************************//** Finds the highest [number] for foreign key constraints of the table. Looks only at the >= 4.0.18-format id's, which are of the form databasename/tablename_ibfk_[number]. @return highest number, 0 if table has no new format foreign key constraints */ ulint dict_table_get_highest_foreign_id( /*==============================*/ dict_table_t* table) /*!< in: table in the dictionary memory cache */ { dict_foreign_t* foreign; char* endp; ulint biggest_id = 0; ulint id; ulint len; DBUG_ENTER("dict_table_get_highest_foreign_id"); ut_a(table); len = ut_strlen(table->name.m_name); for (dict_foreign_set::iterator it = table->foreign_set.begin(); it != table->foreign_set.end(); ++it) { foreign = *it; if (ut_strlen(foreign->id) > ((sizeof dict_ibfk) - 1) + len && 0 == ut_memcmp(foreign->id, table->name.m_name, len) && 0 == ut_memcmp(foreign->id + len, dict_ibfk, (sizeof dict_ibfk) - 1) && foreign->id[len + ((sizeof dict_ibfk) - 1)] != '0') { /* It is of the >= 4.0.18 format */ id = strtoul(foreign->id + len + ((sizeof dict_ibfk) - 1), &endp, 10); if (*endp == '\0') { ut_a(id != biggest_id); if (id > biggest_id) { biggest_id = id; } } } } ulint size = table->foreign_set.size(); biggest_id = (size > biggest_id) ? size : biggest_id; DBUG_PRINT("dict_table_get_highest_foreign_id", ("id: %lu", biggest_id)); DBUG_RETURN(biggest_id); } /*********************************************************************//** Reports a simple foreign key create clause syntax error. */ static void dict_foreign_report_syntax_err( /*===========================*/ const char* name, /*!< in: table name */ const char* start_of_latest_foreign, /*!< in: start of the foreign key clause in the SQL string */ const char* ptr) /*!< in: place of the syntax error */ { ut_ad(!srv_read_only_mode); FILE* ef = dict_foreign_err_file; mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, "%s:\nSyntax error close to:\n%s\n", start_of_latest_foreign, ptr); mutex_exit(&dict_foreign_err_mutex); } /*********************************************************************//** Scans a table create SQL string and adds to the data dictionary the foreign key constraints declared in the string. This function should be called after the indexes for a table have been created. Each foreign key constraint must be accompanied with indexes in bot participating tables. The indexes are allowed to contain more fields than mentioned in the constraint. @param[in] trx transaction @param[in] heap memory heap @param[in] cs the character set of sql_string @param[in] sql_string table create statement where foreign keys are declared like: FOREIGN KEY (a, b) REFERENCES table2(c, d), table2 can be written also with the database name before it: test.table2; the default database id the database of parameter name @param[in] name table full name in normalized form @param[in] reject_fks if TRUE, fail with error code DB_CANNOT_ADD_CONSTRAINT if any foreign keys are found. @return error code or DB_SUCCESS */ static dberr_t dict_create_foreign_constraints_low( trx_t* trx, mem_heap_t* heap, const CHARSET_INFO* cs, const char* sql_string, const char* name, ibool reject_fks) { dict_table_t* table = NULL; dict_table_t* referenced_table; dict_table_t* table_to_alter; ulint highest_id_so_far = 0; ulint number = 1; dict_index_t* index; dict_foreign_t* foreign; const char* ptr = sql_string; const char* start_of_latest_foreign = sql_string; FILE* ef = dict_foreign_err_file; const char* constraint_name; ibool success; dberr_t error; const char* ptr1; const char* ptr2; ulint i; ulint j; ibool is_on_delete; ulint n_on_deletes; ulint n_on_updates; const dict_col_t*columns[500]; const char* column_names[500]; const char* referenced_table_name; dict_foreign_set local_fk_set; dict_foreign_set_free local_fk_set_free(local_fk_set); ut_ad(!srv_read_only_mode); ut_ad(mutex_own(&dict_sys->mutex)); table = dict_table_get_low(name); if (table == NULL) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, "Cannot find the table in the internal" " data dictionary of InnoDB.\n" "Create table statement:\n%s\n", sql_string); mutex_exit(&dict_foreign_err_mutex); return(DB_ERROR); } /* First check if we are actually doing an ALTER TABLE, and in that case look for the table being altered */ ptr = dict_accept(cs, ptr, "ALTER", &success); if (!success) { goto loop; } ptr = dict_accept(cs, ptr, "TABLE", &success); if (!success) { goto loop; } /* We are doing an ALTER TABLE: scan the table name we are altering */ ptr = dict_scan_table_name(cs, ptr, &table_to_alter, name, &success, heap, &referenced_table_name); if (!success) { ib::error() << "Could not find the table being ALTERED in: " << sql_string; return(DB_ERROR); } /* Starting from 4.0.18 and 4.1.2, we generate foreign key id's in the format databasename/tablename_ibfk_[number], where [number] is local to the table; look for the highest [number] for table_to_alter, so that we can assign to new constraints higher numbers. */ /* If we are altering a temporary table, the table name after ALTER TABLE does not correspond to the internal table name, and table_to_alter is NULL. TODO: should we fix this somehow? */ if (table_to_alter == NULL) { highest_id_so_far = 0; } else { highest_id_so_far = dict_table_get_highest_foreign_id( table_to_alter); } number = highest_id_so_far + 1; /* Scan for foreign key declarations in a loop */ loop: /* Scan either to "CONSTRAINT" or "FOREIGN", whichever is closer */ ptr1 = dict_scan_to(ptr, "CONSTRAINT"); ptr2 = dict_scan_to(ptr, "FOREIGN"); constraint_name = NULL; if (ptr1 < ptr2) { /* The user may have specified a constraint name. Pick it so that we can store 'databasename/constraintname' as the id of of the constraint to system tables. */ ptr = ptr1; ptr = dict_accept(cs, ptr, "CONSTRAINT", &success); ut_a(success); if (!my_isspace(cs, *ptr) && *ptr != '"' && *ptr != '`') { goto loop; } while (my_isspace(cs, *ptr)) { ptr++; } /* read constraint name unless got "CONSTRAINT FOREIGN" */ if (ptr != ptr2) { ptr = dict_scan_id(cs, ptr, heap, &constraint_name, FALSE, FALSE); } } else { ptr = ptr2; } if (*ptr == '\0') { /* The proper way to reject foreign keys for temporary tables would be to split the lexing and syntactical analysis of foreign key clauses from the actual adding of them, so that ha_innodb.cc could first parse the SQL command, determine if there are any foreign keys, and if so, immediately reject the command if the table is a temporary one. For now, this kludge will work. */ if (reject_fks && !local_fk_set.empty()) { return(DB_CANNOT_ADD_CONSTRAINT); } if (dict_foreigns_has_s_base_col(local_fk_set, table)) { return(DB_NO_FK_ON_S_BASE_COL); } /**********************************************************/ /* The following call adds the foreign key constraints to the data dictionary system tables on disk TODO: NewDD: WL#9535, remove following call when we actually removed InnoDB system tables */ if (!srv_is_upgrade_mode) { error = dict_create_add_foreigns_to_dictionary( local_fk_set, table, trx); } else { error = DB_SUCCESS; } /* This function no longer added FK to tables. The FK will be added by server, and installed to InnoDB dict_table_t during load. TODO: NewDD: WL#9535, Also remove following code with WL#9535 */ if (error == DB_SUCCESS) { #ifndef NO_NEW_DD_FK std::for_each(local_fk_set.begin(), local_fk_set.end(), dict_foreign_free); #endif /* NO_NEW_DD_FK */ local_fk_set.clear(); } return(error); } start_of_latest_foreign = ptr; ptr = dict_accept(cs, ptr, "FOREIGN", &success); if (!success) { goto loop; } if (!my_isspace(cs, *ptr)) { goto loop; } ptr = dict_accept(cs, ptr, "KEY", &success); if (!success) { goto loop; } ptr = dict_accept(cs, ptr, "(", &success); if (!success) { /* MySQL allows also an index id before the '('; we skip it */ ptr = dict_skip_word(cs, ptr, &success); if (!success) { dict_foreign_report_syntax_err( name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } ptr = dict_accept(cs, ptr, "(", &success); if (!success) { /* We do not flag a syntax error here because in an ALTER TABLE we may also have DROP FOREIGN KEY abc */ goto loop; } } i = 0; /* Scan the columns in the first list */ col_loop1: ut_a(i < (sizeof column_names) / sizeof *column_names); ptr = dict_scan_col(cs, ptr, &success, table, columns + i, heap, column_names + i); if (!success) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, "%s:\nCannot resolve column name close to:\n%s\n", start_of_latest_foreign, ptr); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } i++; ptr = dict_accept(cs, ptr, ",", &success); if (success) { goto col_loop1; } ptr = dict_accept(cs, ptr, ")", &success); if (!success) { dict_foreign_report_syntax_err( name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } /* Try to find an index which contains the columns as the first fields and in the right order. There is no need to check column type match (on types_idx), since the referenced table can be NULL if foreign_key_checks is set to 0 */ index = dict_foreign_find_index( table, NULL, column_names, i, NULL, TRUE, FALSE); if (!index) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fputs("There is no index in table ", ef); ut_print_name(ef, NULL, name); fprintf(ef, " where the columns appear\n" "as the first columns. Constraint:\n%s\n%s", start_of_latest_foreign, FOREIGN_KEY_CONSTRAINTS_MSG); mutex_exit(&dict_foreign_err_mutex); return(DB_CHILD_NO_INDEX); } ptr = dict_accept(cs, ptr, "REFERENCES", &success); if (!success || !my_isspace(cs, *ptr)) { dict_foreign_report_syntax_err( name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } /* Don't allow foreign keys on partitioned tables yet. */ ptr1 = dict_scan_to(ptr, "PARTITION"); if (ptr1) { ptr1 = dict_accept(cs, ptr1, "PARTITION", &success); if (success && my_isspace(cs, *ptr1)) { ptr2 = dict_accept(cs, ptr1, "BY", &success); if (success) { my_error(ER_FOREIGN_KEY_ON_PARTITIONED,MYF(0)); return(DB_CANNOT_ADD_CONSTRAINT); } } } if (dict_table_is_partition(table)) { my_error(ER_FOREIGN_KEY_ON_PARTITIONED,MYF(0)); return(DB_CANNOT_ADD_CONSTRAINT); } /* Let us create a constraint struct */ foreign = dict_mem_foreign_create(); if (constraint_name) { ulint db_len; /* Catenate 'databasename/' to the constraint name specified by the user: we conceive the constraint as belonging to the same MySQL 'database' as the table itself. We store the name to foreign->id. */ db_len = dict_get_db_name_len(table->name.m_name); foreign->id = static_cast<char*>(mem_heap_alloc( foreign->heap, db_len + strlen(constraint_name) + 2)); ut_memcpy(foreign->id, table->name.m_name, db_len); foreign->id[db_len] = '/'; strcpy(foreign->id + db_len + 1, constraint_name); } if (foreign->id == NULL) { error = dict_create_add_foreign_id( &number, table->name.m_name, foreign); if (error != DB_SUCCESS) { dict_foreign_free(foreign); return(error); } } std::pair<dict_foreign_set::iterator, bool> ret = local_fk_set.insert(foreign); if (!ret.second) { /* A duplicate foreign key name has been found */ dict_foreign_free(foreign); return(DB_CANNOT_ADD_CONSTRAINT); } foreign->foreign_table = table; foreign->foreign_table_name = mem_heap_strdup( foreign->heap, table->name.m_name); dict_mem_foreign_table_name_lookup_set(foreign, TRUE); foreign->foreign_index = index; foreign->n_fields = (unsigned int) i; foreign->foreign_col_names = static_cast<const char**>( mem_heap_alloc(foreign->heap, i * sizeof(void*))); for (i = 0; i < foreign->n_fields; i++) { foreign->foreign_col_names[i] = mem_heap_strdup( foreign->heap, table->get_col_name(dict_col_get_no(columns[i]))); } ptr = dict_scan_table_name(cs, ptr, &referenced_table, name, &success, heap, &referenced_table_name); /* Note that referenced_table can be NULL if the user has suppressed checking of foreign key constraints! */ if (!success || (!referenced_table && trx->check_foreigns)) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, "%s:\nCannot resolve table name close to:\n" "%s\n", start_of_latest_foreign, ptr); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } /* Don't allow foreign keys on partitioned tables yet. */ if (referenced_table && dict_table_is_partition(referenced_table)) { /* How could one make a referenced table to be a partition? */ ut_ad(0); my_error(ER_FOREIGN_KEY_ON_PARTITIONED,MYF(0)); return(DB_CANNOT_ADD_CONSTRAINT); } ptr = dict_accept(cs, ptr, "(", &success); if (!success) { dict_foreign_report_syntax_err(name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } /* Scan the columns in the second list */ i = 0; col_loop2: ptr = dict_scan_col(cs, ptr, &success, referenced_table, columns + i, heap, column_names + i); i++; if (!success) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, "%s:\nCannot resolve column name close to:\n" "%s\n", start_of_latest_foreign, ptr); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } ptr = dict_accept(cs, ptr, ",", &success); if (success) { goto col_loop2; } ptr = dict_accept(cs, ptr, ")", &success); if (!success || foreign->n_fields != i) { dict_foreign_report_syntax_err(name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } n_on_deletes = 0; n_on_updates = 0; scan_on_conditions: /* Loop here as long as we can find ON ... conditions */ ptr = dict_accept(cs, ptr, "ON", &success); if (!success) { goto try_find_index; } ptr = dict_accept(cs, ptr, "DELETE", &success); if (!success) { ptr = dict_accept(cs, ptr, "UPDATE", &success); if (!success) { dict_foreign_report_syntax_err( name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } is_on_delete = FALSE; n_on_updates++; } else { is_on_delete = TRUE; n_on_deletes++; } ptr = dict_accept(cs, ptr, "RESTRICT", &success); if (success) { goto scan_on_conditions; } ptr = dict_accept(cs, ptr, "CASCADE", &success); if (success) { if (is_on_delete) { foreign->type |= DICT_FOREIGN_ON_DELETE_CASCADE; } else { foreign->type |= DICT_FOREIGN_ON_UPDATE_CASCADE; } goto scan_on_conditions; } ptr = dict_accept(cs, ptr, "NO", &success); if (success) { ptr = dict_accept(cs, ptr, "ACTION", &success); if (!success) { dict_foreign_report_syntax_err( name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } if (is_on_delete) { foreign->type |= DICT_FOREIGN_ON_DELETE_NO_ACTION; } else { foreign->type |= DICT_FOREIGN_ON_UPDATE_NO_ACTION; } goto scan_on_conditions; } ptr = dict_accept(cs, ptr, "SET", &success); if (!success) { dict_foreign_report_syntax_err(name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } ptr = dict_accept(cs, ptr, "NULL", &success); if (!success) { dict_foreign_report_syntax_err(name, start_of_latest_foreign, ptr); return(DB_CANNOT_ADD_CONSTRAINT); } for (j = 0; j < foreign->n_fields; j++) { if ((foreign->foreign_index->get_col(j)->prtype) & DATA_NOT_NULL) { /* It is not sensible to define SET NULL if the column is not allowed to be NULL! */ mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, "%s:\n" "You have defined a SET NULL condition" " though some of the\n" "columns are defined as NOT NULL.\n", start_of_latest_foreign); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } } if (is_on_delete) { foreign->type |= DICT_FOREIGN_ON_DELETE_SET_NULL; } else { foreign->type |= DICT_FOREIGN_ON_UPDATE_SET_NULL; } goto scan_on_conditions; try_find_index: if (n_on_deletes > 1 || n_on_updates > 1) { /* It is an error to define more than 1 action */ mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, "%s:\n" "You have twice an ON DELETE clause" " or twice an ON UPDATE clause.\n", start_of_latest_foreign); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } /* Try to find an index which contains the columns as the first fields and in the right order, and the types are the same as in foreign->foreign_index */ if (referenced_table) { index = dict_foreign_find_index(referenced_table, NULL, column_names, i, foreign->foreign_index, TRUE, FALSE); if (!index) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, "%s:\n" "Cannot find an index in the" " referenced table where the\n" "referenced columns appear as the" " first columns, or column types\n" "in the table and the referenced table" " do not match for constraint.\n" "Note that the internal storage type of" " ENUM and SET changed in\n" "tables created with >= InnoDB-4.1.12," " and such columns in old tables\n" "cannot be referenced by such columns" " in new tables.\n%s\n", start_of_latest_foreign, FOREIGN_KEY_CONSTRAINTS_MSG); mutex_exit(&dict_foreign_err_mutex); return(DB_PARENT_NO_INDEX); } } else { ut_a(trx->check_foreigns == FALSE); index = NULL; } foreign->referenced_index = index; foreign->referenced_table = referenced_table; foreign->referenced_table_name = mem_heap_strdup( foreign->heap, referenced_table_name); dict_mem_referenced_table_name_lookup_set(foreign, TRUE); foreign->referenced_col_names = static_cast<const char**>( mem_heap_alloc(foreign->heap, i * sizeof(void*))); for (i = 0; i < foreign->n_fields; i++) { foreign->referenced_col_names[i] = mem_heap_strdup(foreign->heap, column_names[i]); } goto loop; } /** Scans a table create SQL string and adds to the data dictionary the foreign key constraints declared in the string. This function should be called after the indexes for a table have been created. Each foreign key constraint must be accompanied with indexes in bot participating tables. The indexes are allowed to contain more fields than mentioned in the constraint. @param[in] trx transaction @param[in] sql_string table create statement where foreign keys are declared like: FOREIGN KEY (a, b) REFERENCES table2(c, d), table2 can be written also with the database name before it: test.table2; the default database id the database of parameter name @param[in] sql_length length of sql_string @param[in] name table full name in normalized form @param[in] reject_fks if TRUE, fail with error code DB_CANNOT_ADD_CONSTRAINT if any foreign keys are found. @return error code or DB_SUCCESS */ dberr_t dict_create_foreign_constraints( trx_t* trx, const char* sql_string, size_t sql_length, const char* name, ibool reject_fks) { char* str; dberr_t err; mem_heap_t* heap; ut_a(trx); ut_a(trx->mysql_thd); str = dict_strip_comments(sql_string, sql_length); heap = mem_heap_create(10000); err = dict_create_foreign_constraints_low( trx, heap, innobase_get_charset(trx->mysql_thd), str, name, reject_fks); mem_heap_free(heap); ut_free(str); return(err); } /**********************************************************************//** Parses the CONSTRAINT id's to be dropped in an ALTER TABLE statement. @return DB_SUCCESS or DB_CANNOT_DROP_CONSTRAINT if syntax error or the constraint id does not match */ dberr_t dict_foreign_parse_drop_constraints( /*================================*/ mem_heap_t* heap, /*!< in: heap from which we can allocate memory */ trx_t* trx, /*!< in: transaction */ dict_table_t* table, /*!< in: table */ ulint* n, /*!< out: number of constraints to drop */ const char*** constraints_to_drop) /*!< out: id's of the constraints to drop */ { ibool success; char* str; size_t len; const char* ptr; const char* id; const CHARSET_INFO* cs; ut_a(trx); ut_a(trx->mysql_thd); cs = innobase_get_charset(trx->mysql_thd); *n = 0; *constraints_to_drop = static_cast<const char**>( mem_heap_alloc(heap, 1000 * sizeof(char*))); ptr = innobase_get_stmt_unsafe(trx->mysql_thd, &len); str = dict_strip_comments(ptr, len); ptr = str; ut_ad(mutex_own(&dict_sys->mutex)); loop: ptr = dict_scan_to(ptr, "DROP"); if (*ptr == '\0') { ut_free(str); return(DB_SUCCESS); } ptr = dict_accept(cs, ptr, "DROP", &success); if (!my_isspace(cs, *ptr)) { goto loop; } ptr = dict_accept(cs, ptr, "FOREIGN", &success); if (!success || !my_isspace(cs, *ptr)) { goto loop; } ptr = dict_accept(cs, ptr, "KEY", &success); if (!success) { goto syntax_error; } ptr = dict_scan_id(cs, ptr, heap, &id, FALSE, TRUE); if (id == NULL) { goto syntax_error; } ut_a(*n < 1000); (*constraints_to_drop)[*n] = id; (*n)++; if (std::find_if(table->foreign_set.begin(), table->foreign_set.end(), dict_foreign_matches_id(id)) == table->foreign_set.end()) { if (!srv_read_only_mode) { FILE* ef = dict_foreign_err_file; mutex_enter(&dict_foreign_err_mutex); rewind(ef); ut_print_timestamp(ef); fputs(" Error in dropping of a foreign key" " constraint of table ", ef); ut_print_name(ef, NULL, table->name.m_name); fprintf(ef, ",\nin SQL command\n%s" "\nCannot find a constraint with the" " given id %s.\n", str, id); mutex_exit(&dict_foreign_err_mutex); } ut_free(str); return(DB_CANNOT_DROP_CONSTRAINT); } goto loop; syntax_error: if (!srv_read_only_mode) { FILE* ef = dict_foreign_err_file; mutex_enter(&dict_foreign_err_mutex); rewind(ef); ut_print_timestamp(ef); fputs(" Syntax error in dropping of a" " foreign key constraint of table ", ef); ut_print_name(ef, NULL, table->name.m_name); fprintf(ef, ",\n" "close to:\n%s\n in SQL command\n%s\n", ptr, str); mutex_exit(&dict_foreign_err_mutex); } ut_free(str); return(DB_CANNOT_DROP_CONSTRAINT); } /*==================== END OF FOREIGN KEY PROCESSING ====================*/ #ifdef UNIV_DEBUG /**********************************************************************//** Checks that a tuple has n_fields_cmp value in a sensible range, so that no comparison can occur with the page number field in a node pointer. @return TRUE if ok */ ibool dict_index_check_search_tuple( /*==========================*/ const dict_index_t* index, /*!< in: index tree */ const dtuple_t* tuple) /*!< in: tuple used in a search */ { ut_a(index); ut_a(dtuple_get_n_fields_cmp(tuple) <= dict_index_get_n_unique_in_tree(index)); ut_ad(index->page != FIL_NULL); ut_ad(index->page >= FSP_FIRST_INODE_PAGE_NO); ut_ad(dtuple_check_typed(tuple)); ut_ad(!(index->type & DICT_FTS)); return(TRUE); } #endif /* UNIV_DEBUG */ /**********************************************************************//** Builds a node pointer out of a physical record and a page number. @return own: node pointer */ dtuple_t* dict_index_build_node_ptr( /*======================*/ const dict_index_t* index, /*!< in: index */ const rec_t* rec, /*!< in: record for which to build node pointer */ page_no_t page_no,/*!< in: page number to put in node pointer */ mem_heap_t* heap, /*!< in: memory heap where pointer created */ ulint level) /*!< in: level of rec in tree: 0 means leaf level */ { dtuple_t* tuple; dfield_t* field; byte* buf; ulint n_unique; if (dict_index_is_ibuf(index)) { /* In a universal index tree, we take the whole record as the node pointer if the record is on the leaf level, on non-leaf levels we remove the last field, which contains the page number of the child page */ ut_a(!dict_table_is_comp(index->table)); n_unique = rec_get_n_fields_old(rec); if (level > 0) { ut_a(n_unique > 1); n_unique--; } } else { n_unique = dict_index_get_n_unique_in_tree_nonleaf(index); } tuple = dtuple_create(heap, n_unique + 1); /* When searching in the tree for the node pointer, we must not do comparison on the last field, the page number field, as on upper levels in the tree there may be identical node pointers with a different page number; therefore, we set the n_fields_cmp to one less: */ dtuple_set_n_fields_cmp(tuple, n_unique); dict_index_copy_types(tuple, index, n_unique); buf = static_cast<byte*>(mem_heap_alloc(heap, 4)); mach_write_to_4(buf, page_no); field = dtuple_get_nth_field(tuple, n_unique); dfield_set_data(field, buf, 4); dtype_set(dfield_get_type(field), DATA_SYS_CHILD, DATA_NOT_NULL, 4); rec_copy_prefix_to_dtuple(tuple, rec, index, n_unique, heap); dtuple_set_info_bits(tuple, dtuple_get_info_bits(tuple) | REC_STATUS_NODE_PTR); ut_ad(dtuple_check_typed(tuple)); return(tuple); } /**********************************************************************//** Copies an initial segment of a physical record, long enough to specify an index entry uniquely. @return pointer to the prefix record */ rec_t* dict_index_copy_rec_order_prefix( /*=============================*/ const dict_index_t* index, /*!< in: index */ const rec_t* rec, /*!< in: record for which to copy prefix */ ulint* n_fields,/*!< out: number of fields copied */ byte** buf, /*!< in/out: memory buffer for the copied prefix, or NULL */ ulint* buf_size)/*!< in/out: buffer size */ { ulint n; UNIV_PREFETCH_R(rec); if (dict_index_is_ibuf(index)) { ut_a(!dict_table_is_comp(index->table)); n = rec_get_n_fields_old(rec); } else { if (page_is_leaf(page_align(rec))) { n = dict_index_get_n_unique_in_tree(index); } else { n = dict_index_get_n_unique_in_tree_nonleaf(index); /* For internal node of R-tree, since we need to compare the page no field, so, we need to copy this field as well. */ if (dict_index_is_spatial(index)) { n++; } } } *n_fields = n; return(rec_copy_prefix_to_buf(rec, index, n, buf, buf_size)); } /**********************************************************************//** Builds a typed data tuple out of a physical record. @return own: data tuple */ dtuple_t* dict_index_build_data_tuple( /*========================*/ dict_index_t* index, /*!< in: index tree */ rec_t* rec, /*!< in: record for which to build data tuple */ ulint n_fields,/*!< in: number of data fields */ mem_heap_t* heap) /*!< in: memory heap where tuple created */ { dtuple_t* tuple; ut_ad(dict_table_is_comp(index->table) || n_fields <= rec_get_n_fields_old(rec)); tuple = dtuple_create(heap, n_fields); dict_index_copy_types(tuple, index, n_fields); rec_copy_prefix_to_dtuple(tuple, rec, index, n_fields, heap); ut_ad(dtuple_check_typed(tuple)); return(tuple); } /*********************************************************************//** Calculates the minimum record length in an index. */ ulint dict_index_calc_min_rec_len( /*========================*/ const dict_index_t* index) /*!< in: index */ { ulint sum = 0; ulint i; ulint comp = dict_table_is_comp(index->table); if (comp) { ulint nullable = 0; sum = REC_N_NEW_EXTRA_BYTES; for (i = 0; i < dict_index_get_n_fields(index); i++) { const dict_col_t* col = index->get_col(i); ulint size = col->get_fixed_size(comp); sum += size; if (!size) { size = col->len; sum += size < 128 ? 1 : 2; } if (!(col->prtype & DATA_NOT_NULL)) { nullable++; } } /* round the NULL flags up to full bytes */ sum += UT_BITS_IN_BYTES(nullable); return(sum); } for (i = 0; i < dict_index_get_n_fields(index); i++) { sum += index->get_col(i)->get_fixed_size(comp); } if (sum > 127) { sum += 2 * dict_index_get_n_fields(index); } else { sum += dict_index_get_n_fields(index); } sum += REC_N_OLD_EXTRA_BYTES; return(sum); } /**********************************************************************//** Outputs info on a foreign key of a table in a format suitable for CREATE TABLE. */ void dict_print_info_on_foreign_key_in_create_format( /*============================================*/ FILE* file, /*!< in: file where to print */ trx_t* trx, /*!< in: transaction */ dict_foreign_t* foreign, /*!< in: foreign key constraint */ ibool add_newline) /*!< in: whether to add a newline */ { const char* stripped_id; ulint i; if (strchr(foreign->id, '/')) { /* Strip the preceding database name from the constraint id */ stripped_id = foreign->id + 1 + dict_get_db_name_len(foreign->id); } else { stripped_id = foreign->id; } putc(',', file); if (add_newline) { /* SHOW CREATE TABLE wants constraints each printed nicely on its own line, while error messages want no newlines inserted. */ fputs("\n ", file); } fputs(" CONSTRAINT ", file); innobase_quote_identifier(file, trx, stripped_id); fputs(" FOREIGN KEY (", file); for (i = 0;;) { innobase_quote_identifier( file, trx, foreign->foreign_col_names[i]); if (++i < foreign->n_fields) { fputs(", ", file); } else { break; } } fputs(") REFERENCES ", file); if (dict_tables_have_same_db(foreign->foreign_table_name_lookup, foreign->referenced_table_name_lookup)) { /* Do not print the database name of the referenced table */ ut_print_name(file, trx, dict_remove_db_name( foreign->referenced_table_name)); } else { ut_print_name(file, trx, foreign->referenced_table_name); } putc(' ', file); putc('(', file); for (i = 0;;) { innobase_quote_identifier(file, trx, foreign->referenced_col_names[i]); if (++i < foreign->n_fields) { fputs(", ", file); } else { break; } } putc(')', file); if (foreign->type & DICT_FOREIGN_ON_DELETE_CASCADE) { fputs(" ON DELETE CASCADE", file); } if (foreign->type & DICT_FOREIGN_ON_DELETE_SET_NULL) { fputs(" ON DELETE SET NULL", file); } #ifdef HAS_RUNTIME_WL6049 if (foreign->type & DICT_FOREIGN_ON_DELETE_NO_ACTION) { fputs(" ON DELETE NO ACTION", file); } #endif /* HAS_RUNTIME_WL6049 */ if (foreign->type & DICT_FOREIGN_ON_UPDATE_CASCADE) { fputs(" ON UPDATE CASCADE", file); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_SET_NULL) { fputs(" ON UPDATE SET NULL", file); } #ifdef HAS_RUNTIME_WL6049 if (foreign->type & DICT_FOREIGN_ON_UPDATE_NO_ACTION) { fputs(" ON UPDATE NO ACTION", file); } #endif /* HAS_RUNTIME_WL6049 */ } /**********************************************************************//** Outputs info on foreign keys of a table. */ void dict_print_info_on_foreign_keys( /*============================*/ ibool create_table_format, /*!< in: if TRUE then print in a format suitable to be inserted into a CREATE TABLE, otherwise in the format of SHOW TABLE STATUS */ FILE* file, /*!< in: file where to print */ trx_t* trx, /*!< in: transaction */ dict_table_t* table) /*!< in: table */ { dict_foreign_t* foreign; mutex_enter(&dict_sys->mutex); for (dict_foreign_set::iterator it = table->foreign_set.begin(); it != table->foreign_set.end(); ++it) { foreign = *it; if (create_table_format) { dict_print_info_on_foreign_key_in_create_format( file, trx, foreign, TRUE); } else { ulint i; fputs("; (", file); for (i = 0; i < foreign->n_fields; i++) { if (i) { putc(' ', file); } innobase_quote_identifier( file, trx, foreign->foreign_col_names[i]); } fputs(") REFER ", file); ut_print_name(file, trx, foreign->referenced_table_name); putc('(', file); for (i = 0; i < foreign->n_fields; i++) { if (i) { putc(' ', file); } innobase_quote_identifier( file, trx, foreign->referenced_col_names[i]); } putc(')', file); if (foreign->type == DICT_FOREIGN_ON_DELETE_CASCADE) { fputs(" ON DELETE CASCADE", file); } if (foreign->type == DICT_FOREIGN_ON_DELETE_SET_NULL) { fputs(" ON DELETE SET NULL", file); } if (foreign->type & DICT_FOREIGN_ON_DELETE_NO_ACTION) { fputs(" ON DELETE NO ACTION", file); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_CASCADE) { fputs(" ON UPDATE CASCADE", file); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_SET_NULL) { fputs(" ON UPDATE SET NULL", file); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_NO_ACTION) { fputs(" ON UPDATE NO ACTION", file); } } } mutex_exit(&dict_sys->mutex); } /** Inits the structure for persisting dynamic metadata */ void dict_persist_init(void) { dict_persist = static_cast<dict_persist_t*>( ut_zalloc_nokey(sizeof(*dict_persist))); mutex_create(LATCH_ID_DICT_PERSIST_DIRTY_TABLES, &dict_persist->mutex); rw_lock_create(dict_persist_checkpoint_key, &dict_persist->lock, SYNC_PERSIST_CHECKPOINT); UT_LIST_INIT(dict_persist->dirty_dict_tables, &dict_table_t::dirty_dict_tables); dict_persist->persisters = UT_NEW_NOKEY(Persisters()); dict_persist->persisters->add(PM_INDEX_CORRUPTED); dict_persist->persisters->add(PM_TABLE_AUTO_INC); } /** Clear the structure */ void dict_persist_close(void) { UT_DELETE(dict_persist->persisters); UT_DELETE(dict_persist->table_buffer); mutex_free(&dict_persist->mutex); rw_lock_free(&dict_persist->lock); ut_free(dict_persist); } /** Initialize the dynamic metadata according to the table object @param[in] table table object @param[in,out] metadata metadata to be initialized */ static void dict_init_dynamic_metadata( dict_table_t* table, PersistentTableMetadata*metadata) { ut_ad(mutex_own(&dict_persist->mutex)); ut_ad(metadata->get_table_id() == table->id); metadata->reset(); for (const dict_index_t* index = table->first_index(); index != NULL; index = index->next()) { if (index->is_corrupted()) { metadata->add_corrupted_index( index_id_t(index->space, index->id)); } } if (table->autoinc_persisted != 0) { metadata->set_autoinc(table->autoinc_persisted); } /* Will initialize other metadata here */ } /** Apply the persistent dynamic metadata read from redo logs or DDTableBuffer to corresponding table during recovery. @param[in,out] table table @param[in] metadata structure of persistent metadata @return true if we do apply something to the in-memory table object, otherwise false */ bool dict_table_apply_dynamic_metadata( dict_table_t* table, const PersistentTableMetadata* metadata) { bool get_dirty = false; ut_ad(mutex_own(&dict_sys->mutex)); /* Apply corrupted index ids first */ const corrupted_ids_t corrupted_ids = metadata->get_corrupted_indexes(); for (corrupted_ids_t::const_iterator iter = corrupted_ids.begin(); iter != corrupted_ids.end(); ++iter) { const index_id_t index_id = *iter; dict_index_t* index; index = const_cast<dict_index_t*>( dict_table_find_index_on_id(table, index_id)); if (index != NULL) { ut_ad(index->space == index_id.m_space_id); if (!index->is_corrupted()) { index->type |= DICT_CORRUPT; get_dirty = true; } } else { /* In some cases, we could only load some indexes of a table but not all(See dict_load_indexes()). So we might not find it here */ ib::info() << "Failed to find the index: " << index_id.m_index_id << " in space: " << index_id.m_space_id << " of table: " << table->name << "(table id: " << table->id << "). The index should have been dropped" << " or couldn't be loaded."; } } ib_uint64_t autoinc = metadata->get_autoinc(); /* This happens during recovery, so no locks are needed. */ if (autoinc > table->autoinc_persisted) { get_dirty = true; table->autoinc = autoinc; table->autoinc_persisted = autoinc; } /* Will apply other persistent metadata here */ return(get_dirty); } /** Read persistent dynamic metadata stored in a buffer @param[in] buffer buffer to read @param[in] size size of data in buffer @param[in] metadata where we store the metadata from buffer */ void dict_table_read_dynamic_metadata( const byte* buffer, ulint size, PersistentTableMetadata*metadata) { const byte* pos = buffer; persistent_type_t type; Persister* persister; ulint consumed; bool corrupt; while (size > 0) { type = static_cast<persistent_type_t>(pos[0]); ut_ad(type > PM_SMALLEST_TYPE && type < PM_BIGGEST_TYPE); persister = dict_persist->persisters->get(type); ut_ad(persister != NULL); consumed = persister->read(*metadata, pos, size, &corrupt); ut_ad(consumed != 0); ut_ad(size >= consumed); ut_ad(!corrupt); size -= consumed; pos += consumed; } ut_ad(size == 0); } /** Check if there is any latest persistent dynamic metadata recorded in DDTableBuffer table of the specific table. If so, read the metadata and update the table object accordingly. It's used when loading table. @param[in] table table object */ void dict_table_load_dynamic_metadata( dict_table_t* table) { DDTableBuffer* table_buffer; ut_ad(dict_sys != NULL); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(!table->is_temporary()); table_buffer = dict_persist->table_buffer; mutex_enter(&dict_persist->mutex); std::string* readmeta; readmeta = table_buffer->get(table->id); if (readmeta->length() != 0) { /* Persistent dynamic metadata of this table have changed recently, we need to update them to in-memory table */ PersistentTableMetadata metadata(table->id); dict_table_read_dynamic_metadata( reinterpret_cast<const byte*>(readmeta->data()), readmeta->length(), &metadata); bool is_dirty = dict_table_apply_dynamic_metadata( table, &metadata); /* If !is_dirty, it could be either: 1. It's first time to load this table, and the corrupted index marked has been dropped. Current dirty_status should be METADATA_CLEAN. 2. It's the second time to apply dynamic metadata to this table, current in-memory dynamic metadata is up-to-date. Current dirty_status should be METADATA_BUFFERED. In both cases, we don't have to change the dirty_status */ if (is_dirty) { UT_LIST_ADD_LAST(dict_persist->dirty_dict_tables, table); table->dirty_status = METADATA_BUFFERED; ut_d(table->in_dirty_dict_tables_list = true); } } mutex_exit(&dict_persist->mutex); UT_DELETE(readmeta); } /** Mark the dirty_status of a table as METADATA_DIRTY, and add it to the dirty_dict_tables list if necessary. @param[in,out] table table */ void dict_table_mark_dirty( dict_table_t* table) { ut_ad(!table->is_temporary()); mutex_enter(&dict_persist->mutex); switch (table->dirty_status) { case METADATA_DIRTY: break; case METADATA_CLEAN: /* Not in dirty_tables list, add it now */ UT_LIST_ADD_LAST(dict_persist->dirty_dict_tables, table); ut_d(table->in_dirty_dict_tables_list = true); /* Fall through */ case METADATA_BUFFERED: table->dirty_status = METADATA_DIRTY; } ut_ad(table->in_dirty_dict_tables_list); mutex_exit(&dict_persist->mutex); } /** Flags an index corrupted in the data dictionary cache only. This is used to mark a corrupted index when index's own dictionary is corrupted, and we would force to load such index for repair purpose. Besides, we have to write a redo log. We don't want to hold dict_sys->mutex here, so that we can set index as corrupted in some low-level functions. We would only set the flags from not corrupted to corrupted when server is running, so it should be safe to set it directly. @param[in,out] index index, must not be NULL */ void dict_set_corrupted( dict_index_t* index) { dict_table_t* table = index->table; ut_ad(!dict_table_is_comp(dict_sys->sys_tables)); ut_ad(!dict_table_is_comp(dict_sys->sys_indexes)); /* Acquire lock at first, so that setting index as corrupted would be protected, in case that some checkpoint would flush the table to DDTableBuffer right after setting corrupted and mark the table as METADATA_BUFFERED, but here we would set it to METADATA_DIRTY again. */ rw_lock_s_lock(&dict_persist->lock); if (!(index->type & DICT_CORRUPT)) { index->type |= DICT_CORRUPT; if (!srv_read_only_mode && !table->is_temporary()) { /* In RO mode, we should be able to mark the in memory indexes as corrupted but do not log it. Also, no need to log for temporary table */ PersistentTableMetadata metadata(table->id); metadata.add_corrupted_index( index_id_t(index->space, index->id)); Persister* persister = dict_persist->persisters->get( PM_INDEX_CORRUPTED); ut_ad(persister != NULL); mtr_t mtr; mtr.start(); persister->write_log(table->id, metadata, &mtr); mtr.commit(); /* Try to flush the log immediately, so that in most cases the corrupted bit would be persisted in redo log */ log_write_up_to(mtr.commit_lsn(), true); dict_table_mark_dirty(table); } } /* Release the lock after adding the table to dirty table list, so a checkpoint happens after the mtr commits could always write back the table's metadata. Otherwise, checkpoint could not find the table in dirty table's list and not write it back, after the checkpoint finishes and then a crash, the corrupted bit written here would get lost. */ rw_lock_s_unlock(&dict_persist->lock); } /** Write the dirty persistent dynamic metadata for a table to DD TABLE BUFFER table. This is the low level function to write back. @param[in,out] table table to write */ static void dict_table_persist_to_dd_table_buffer_low( dict_table_t* table) { ut_ad(dict_sys != NULL); ut_ad(mutex_own(&dict_persist->mutex)); ut_ad(table->dirty_status == METADATA_DIRTY); ut_ad(table->in_dirty_dict_tables_list); ut_ad(!table->is_temporary()); DDTableBuffer* table_buffer = dict_persist->table_buffer; PersistentTableMetadata metadata(table->id); byte buffer[REC_MAX_DATA_SIZE]; ulint size = 0; byte* pos = buffer; persistent_type_t type; dict_init_dynamic_metadata(table, &metadata); /* Write all the persistent metadata of the table as a blob */ for (type = static_cast<persistent_type_t>(PM_SMALLEST_TYPE + 1); type < PM_BIGGEST_TYPE; type = static_cast<persistent_type_t>(type + 1)) { ut_ad(size <= REC_MAX_DATA_SIZE); Persister* persister = dict_persist->persisters->get(type); ulint consumed = persister->write(metadata, pos, REC_MAX_DATA_SIZE - size); pos += consumed; size += consumed; } dberr_t error = table_buffer->replace(table->id, buffer, size); ut_a(error == DB_SUCCESS); table->dirty_status = METADATA_BUFFERED; } /** Write back the dirty persistent dynamic metadata of the table to DDTableBuffer @param[in,out] table table object */ void dict_table_persist_to_dd_table_buffer( dict_table_t* table) { ut_ad(dict_sys != NULL); ut_ad(mutex_own(&dict_sys->mutex)); mutex_enter(&dict_persist->mutex); if (table->dirty_status != METADATA_DIRTY) { /* This is a double check, since we call this function without holding dict_sys->mutex by dict_index_remove_from_cache_low() and the dirty_status maybe changed by checkpoint etc. */ mutex_exit(&dict_persist->mutex); return; } ut_ad(table->in_dirty_dict_tables_list); dict_table_persist_to_dd_table_buffer_low(table); mutex_exit(&dict_persist->mutex); } /** Check if any table has any dirty persistent data, if so write dirty persistent data of table to DD TABLE BUFFER table accordingly @return true if any table is dirty and write to DD TABLE BUFFER would possibly be done */ bool dict_persist_to_dd_table_buffer(void) { bool persisted = false; if (dict_sys == NULL) { /* We don't have dict_sys now, so just return. This only happen during recovery. TODO: remove in WL#7488 */ return(persisted); } mutex_enter(&dict_persist->mutex); if (UT_LIST_GET_LEN(dict_persist->dirty_dict_tables) == 0) { mutex_exit(&dict_persist->mutex); return(persisted); } for (dict_table_t* table = UT_LIST_GET_FIRST( dict_persist->dirty_dict_tables); table != NULL; ) { ut_ad(table->dirty_status == METADATA_DIRTY || table->dirty_status == METADATA_BUFFERED); dict_table_t* next = UT_LIST_GET_NEXT( dirty_dict_tables, table); #ifdef UNIV_DEBUG ut_a(next == NULL || next->magic_n == DICT_TABLE_MAGIC_N); #endif /* UNIV_DEBUG */ if (table->dirty_status == METADATA_DIRTY) { dict_table_persist_to_dd_table_buffer_low(table); persisted = true; } table = next; } mutex_exit(&dict_persist->mutex); return(persisted); } /** Sets merge_threshold in the SYS_INDEXES @param[in,out] index index @param[in] merge_threshold value to set */ void dict_index_set_merge_threshold( dict_index_t* index, ulint merge_threshold) { mem_heap_t* heap; mtr_t mtr; dict_index_t* sys_index; dtuple_t* tuple; dfield_t* dfield; byte* buf; btr_cur_t cursor; ut_ad(index != NULL); ut_ad(!dict_table_is_comp(dict_sys->sys_tables)); ut_ad(!dict_table_is_comp(dict_sys->sys_indexes)); rw_lock_x_lock(dict_operation_lock); mutex_enter(&(dict_sys->mutex)); heap = mem_heap_create(sizeof(dtuple_t) + 2 * (sizeof(dfield_t) + sizeof(que_fork_t) + sizeof(upd_node_t) + sizeof(upd_t) + 12)); mtr_start(&mtr); sys_index = UT_LIST_GET_FIRST(dict_sys->sys_indexes->indexes); /* Find the index row in SYS_INDEXES */ tuple = dtuple_create(heap, 2); dfield = dtuple_get_nth_field(tuple, 0); buf = static_cast<byte*>(mem_heap_alloc(heap, 8)); mach_write_to_8(buf, index->table->id); dfield_set_data(dfield, buf, 8); dfield = dtuple_get_nth_field(tuple, 1); buf = static_cast<byte*>(mem_heap_alloc(heap, 8)); mach_write_to_8(buf, index->id); dfield_set_data(dfield, buf, 8); dict_index_copy_types(tuple, sys_index, 2); btr_cur_search_to_nth_level(sys_index, 0, tuple, PAGE_CUR_GE, BTR_MODIFY_LEAF, &cursor, 0, __FILE__, __LINE__, &mtr); if (cursor.up_match == dtuple_get_n_fields(tuple) && rec_get_n_fields_old(btr_cur_get_rec(&cursor)) == DICT_NUM_FIELDS__SYS_INDEXES) { ulint len; byte* field = rec_get_nth_field_old( btr_cur_get_rec(&cursor), DICT_FLD__SYS_INDEXES__MERGE_THRESHOLD, &len); ut_ad(len == 4); if (len == 4) { mlog_write_ulint(field, merge_threshold, MLOG_4BYTES, &mtr); } } mtr_commit(&mtr); mem_heap_free(heap); mutex_exit(&(dict_sys->mutex)); rw_lock_x_unlock(dict_operation_lock); } #ifdef UNIV_DEBUG /** Sets merge_threshold for all indexes in the list of tables @param[in] list pointer to the list of tables @param[in] merge_threshold_all value to set for all indexes */ inline void dict_set_merge_threshold_list_debug( UT_LIST_BASE_NODE_T(dict_table_t)* list, uint merge_threshold_all) { for (dict_table_t* table = UT_LIST_GET_FIRST(*list); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { for (dict_index_t* index = UT_LIST_GET_FIRST(table->indexes); index != NULL; index = UT_LIST_GET_NEXT(indexes, index)) { rw_lock_x_lock(dict_index_get_lock(index)); index->merge_threshold = merge_threshold_all; rw_lock_x_unlock(dict_index_get_lock(index)); } } } /** Sets merge_threshold for all indexes in dictionary cache for debug. @param[in] merge_threshold_all value to set for all indexes */ void dict_set_merge_threshold_all_debug( uint merge_threshold_all) { mutex_enter(&dict_sys->mutex); dict_set_merge_threshold_list_debug( &dict_sys->table_LRU, merge_threshold_all); dict_set_merge_threshold_list_debug( &dict_sys->table_non_LRU, merge_threshold_all); mutex_exit(&dict_sys->mutex); } #endif /* UNIV_DEBUG */ #endif /* !UNIV_HOTBACKUP */ /**********************************************************************//** Inits dict_ind_redundant. */ void dict_ind_init(void) /*===============*/ { dict_table_t* table; /* create dummy table and index for REDUNDANT infimum and supremum */ table = dict_mem_table_create("SYS_DUMMY1", DICT_HDR_SPACE, 1, 0, 0, 0); dict_mem_table_add_col(table, NULL, NULL, DATA_CHAR, DATA_ENGLISH | DATA_NOT_NULL, 8); dict_ind_redundant = dict_mem_index_create("SYS_DUMMY1", "SYS_DUMMY1", DICT_HDR_SPACE, 0, 1); dict_index_add_col(dict_ind_redundant, table, table->get_col(0), 0, true); dict_ind_redundant->table = table; /* avoid ut_ad(index->cached) in dict_index_get_n_unique_in_tree */ dict_ind_redundant->cached = TRUE; } #ifndef UNIV_HOTBACKUP /**********************************************************************//** Frees dict_ind_redundant. */ static void dict_ind_free(void) /*===============*/ { dict_table_t* table; table = dict_ind_redundant->table; dict_mem_index_free(dict_ind_redundant); dict_ind_redundant = NULL; dict_mem_table_free(table); } /** Get an index by name. @param[in] table the table where to look for the index @param[in] name the index name to look for @param[in] committed true=search for committed, false=search for uncommitted @return index, NULL if does not exist */ dict_index_t* dict_table_get_index_on_name( dict_table_t* table, const char* name, bool committed) { dict_index_t* index; index = table->first_index(); while (index != NULL) { if (index->is_committed() == committed && innobase_strcasecmp(index->name, name) == 0) { return(index); } index = index->next(); } return(NULL); } /**********************************************************************//** Replace the index passed in with another equivalent index in the foreign key lists of the table. @return whether all replacements were found */ bool dict_foreign_replace_index( /*=======================*/ dict_table_t* table, /*!< in/out: table */ const char** col_names, /*!< in: column names, or NULL to use table->col_names */ const dict_index_t* index) /*!< in: index to be replaced */ { bool found = true; dict_foreign_t* foreign; ut_ad(index->to_be_dropped); ut_ad(index->table == table); for (dict_foreign_set::iterator it = table->foreign_set.begin(); it != table->foreign_set.end(); ++it) { foreign = *it; if (foreign->foreign_index == index) { ut_ad(foreign->foreign_table == index->table); dict_index_t* new_index = dict_foreign_find_index( foreign->foreign_table, col_names, foreign->foreign_col_names, foreign->n_fields, index, /*check_charsets=*/TRUE, /*check_null=*/FALSE); if (new_index) { ut_ad(new_index->table == index->table); ut_ad(!new_index->to_be_dropped); } else { found = false; } foreign->foreign_index = new_index; } } for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; if (foreign->referenced_index == index) { ut_ad(foreign->referenced_table == index->table); dict_index_t* new_index = dict_foreign_find_index( foreign->referenced_table, NULL, foreign->referenced_col_names, foreign->n_fields, index, /*check_charsets=*/TRUE, /*check_null=*/FALSE); /* There must exist an alternative index, since this must have been checked earlier. */ if (new_index) { ut_ad(new_index->table == index->table); ut_ad(!new_index->to_be_dropped); } else { found = false; } foreign->referenced_index = new_index; } } return(found); } #ifdef UNIV_DEBUG /**********************************************************************//** Check for duplicate index entries in a table [using the index name] */ void dict_table_check_for_dup_indexes( /*=============================*/ const dict_table_t* table, /*!< in: Check for dup indexes in this table */ enum check_name check) /*!< in: whether and when to allow temporary index names */ { /* Check for duplicates, ignoring indexes that are marked as to be dropped */ const dict_index_t* index1; const dict_index_t* index2; ut_ad(mutex_own(&dict_sys->mutex)); /* The primary index _must_ exist */ ut_a(UT_LIST_GET_LEN(table->indexes) > 0); index1 = UT_LIST_GET_FIRST(table->indexes); do { if (!index1->is_committed()) { ut_a(!index1->is_clustered()); switch (check) { case CHECK_ALL_COMPLETE: ut_error; case CHECK_ABORTED_OK: switch (dict_index_get_online_status(index1)) { case ONLINE_INDEX_COMPLETE: case ONLINE_INDEX_CREATION: ut_error; break; case ONLINE_INDEX_ABORTED: case ONLINE_INDEX_ABORTED_DROPPED: break; } /* fall through */ case CHECK_PARTIAL_OK: break; } } for (index2 = UT_LIST_GET_NEXT(indexes, index1); index2 != NULL; index2 = UT_LIST_GET_NEXT(indexes, index2)) { ut_ad(index1->is_committed() != index2->is_committed() || strcmp(index1->name, index2->name) != 0); } index1 = UT_LIST_GET_NEXT(indexes, index1); } while (index1); } #endif /* UNIV_DEBUG */ /** Converts a database and table name from filesystem encoding (e.g. "@code d@i1b/a@q1b@1Kc @endcode", same format as used in dict_table_t::name) in two strings in UTF8 encoding (e.g. dцb and aюbØc). The output buffers must be at least MAX_DB_UTF8_LEN and MAX_TABLE_UTF8_LEN bytes. @param[in] db_and_table database and table names, e.g. "@code d@i1b/a@q1b@1Kc @endcode" @param[out] db_utf8 database name, e.g. dцb @param[in] db_utf8_size dbname_utf8 size @param[out] table_utf8 table name, e.g. aюbØc @param[in] table_utf8_size table_utf8 size */ void dict_fs2utf8( const char* db_and_table, char* db_utf8, size_t db_utf8_size, char* table_utf8, size_t table_utf8_size) { char db[MAX_DATABASE_NAME_LEN + 1]; ulint db_len; uint errors; db_len = dict_get_db_name_len(db_and_table); ut_a(db_len <= sizeof(db)); memcpy(db, db_and_table, db_len); db[db_len] = '\0'; strconvert( &my_charset_filename, db, system_charset_info, db_utf8, db_utf8_size, &errors); /* convert each # to @0023 in table name and store the result in buf */ const char* table = dict_remove_db_name(db_and_table); const char* table_p; char buf[MAX_TABLE_NAME_LEN * 5 + 1]; char* buf_p; for (table_p = table, buf_p = buf; table_p[0] != '\0'; table_p++) { if (table_p[0] != '#') { buf_p[0] = table_p[0]; buf_p++; } else { buf_p[0] = '@'; buf_p[1] = '0'; buf_p[2] = '0'; buf_p[3] = '2'; buf_p[4] = '3'; buf_p += 5; } ut_a((size_t) (buf_p - buf) < sizeof(buf)); } buf_p[0] = '\0'; errors = 0; strconvert( &my_charset_filename, buf, system_charset_info, table_utf8, table_utf8_size, &errors); if (errors != 0) { snprintf(table_utf8, table_utf8_size, "%s", table); } } /** Resize the hash tables besed on the current buffer pool size. */ void dict_resize() { dict_table_t* table; mutex_enter(&dict_sys->mutex); /* all table entries are in table_LRU and table_non_LRU lists */ hash_table_free(dict_sys->table_hash); hash_table_free(dict_sys->table_id_hash); dict_sys->table_hash = hash_create( buf_pool_get_curr_size() / (DICT_POOL_PER_TABLE_HASH * UNIV_WORD_SIZE)); dict_sys->table_id_hash = hash_create( buf_pool_get_curr_size() / (DICT_POOL_PER_TABLE_HASH * UNIV_WORD_SIZE)); for (table = UT_LIST_GET_FIRST(dict_sys->table_LRU); table; table = UT_LIST_GET_NEXT(table_LRU, table)) { ulint fold = ut_fold_string(table->name.m_name); ulint id_fold = ut_fold_ull(table->id); HASH_INSERT(dict_table_t, name_hash, dict_sys->table_hash, fold, table); HASH_INSERT(dict_table_t, id_hash, dict_sys->table_id_hash, id_fold, table); } for (table = UT_LIST_GET_FIRST(dict_sys->table_non_LRU); table; table = UT_LIST_GET_NEXT(table_LRU, table)) { ulint fold = ut_fold_string(table->name.m_name); ulint id_fold = ut_fold_ull(table->id); HASH_INSERT(dict_table_t, name_hash, dict_sys->table_hash, fold, table); HASH_INSERT(dict_table_t, id_hash, dict_sys->table_id_hash, id_fold, table); } mutex_exit(&dict_sys->mutex); } /**********************************************************************//** Closes the data dictionary module. */ void dict_close(void) /*============*/ { if (dict_sys == NULL) { /* This should only happen if a failure occurred during redo log processing. */ return; } /* Acquire only because it's a pre-condition. */ mutex_enter(&dict_sys->mutex); if (dict_sys->table_stats != NULL) { dict_table_close(dict_sys->table_stats, true, false); } if (dict_sys->index_stats != NULL) { dict_table_close(dict_sys->index_stats, true, false); } if (dict_sys->dynamic_metadata != NULL) { dict_table_close(dict_sys->dynamic_metadata, true, false); } /* Free the hash elements. We don't remove them from the table because we are going to destroy the table anyway. */ for (ulint i = 0; i < hash_get_n_cells(dict_sys->table_id_hash); i++) { dict_table_t* table; table = static_cast<dict_table_t*>( HASH_GET_FIRST(dict_sys->table_hash, i)); while (table) { dict_table_t* prev_table = table; table = static_cast<dict_table_t*>( HASH_GET_NEXT(name_hash, prev_table)); ut_ad(prev_table->magic_n == DICT_TABLE_MAGIC_N); dict_table_remove_from_cache(prev_table); } } hash_table_free(dict_sys->table_hash); /* The elements are the same instance as in dict_sys->table_hash, therefore we don't delete the individual elements. */ hash_table_free(dict_sys->table_id_hash); dict_ind_free(); mutex_exit(&dict_sys->mutex); mutex_free(&dict_sys->mutex); rw_lock_free(dict_operation_lock); ut_free(dict_operation_lock); dict_operation_lock = NULL; mutex_free(&dict_foreign_err_mutex); if (dict_foreign_err_file != NULL) { fclose(dict_foreign_err_file); dict_foreign_err_file = NULL; } ut_ad(dict_sys->size == 0); ut_free(dict_sys); dict_sys = NULL; } #ifdef UNIV_DEBUG /**********************************************************************//** Validate the dictionary table LRU list. @return TRUE if valid */ static ibool dict_lru_validate(void) /*===================*/ { dict_table_t* table; ut_ad(mutex_own(&dict_sys->mutex)); for (table = UT_LIST_GET_FIRST(dict_sys->table_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { ut_a(table->can_be_evicted); } for (table = UT_LIST_GET_FIRST(dict_sys->table_non_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { ut_a(!table->can_be_evicted); } return(TRUE); } /**********************************************************************//** Check if a table exists in the dict table LRU list. @return TRUE if table found in LRU list */ static ibool dict_lru_find_table( /*================*/ const dict_table_t* find_table) /*!< in: table to find */ { dict_table_t* table; ut_ad(find_table != NULL); ut_ad(mutex_own(&dict_sys->mutex)); for (table = UT_LIST_GET_FIRST(dict_sys->table_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { ut_a(table->can_be_evicted); if (table == find_table) { return(TRUE); } } return(FALSE); } /**********************************************************************//** Check if a table exists in the dict table non-LRU list. @return TRUE if table found in non-LRU list */ static ibool dict_non_lru_find_table( /*====================*/ const dict_table_t* find_table) /*!< in: table to find */ { dict_table_t* table; ut_ad(find_table != NULL); ut_ad(mutex_own(&dict_sys->mutex)); for (table = UT_LIST_GET_FIRST(dict_sys->table_non_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { ut_a(!table->can_be_evicted); if (table == find_table) { return(TRUE); } } return(FALSE); } #endif /* UNIV_DEBUG */ /*********************************************************************//** Check an index to see whether its first fields are the columns in the array, in the same order and is not marked for deletion and is not the same as types_idx. @return true if the index qualifies, otherwise false */ bool dict_foreign_qualify_index( /*=======================*/ const dict_table_t* table, /*!< in: table */ const char** col_names, /*!< in: column names, or NULL to use table->col_names */ const char** columns,/*!< in: array of column names */ ulint n_cols, /*!< in: number of columns */ const dict_index_t* index, /*!< in: index to check */ const dict_index_t* types_idx, /*!< in: NULL or an index whose types the column types must match */ bool check_charsets, /*!< in: whether to check charsets. only has an effect if types_idx != NULL */ ulint check_null) /*!< in: nonzero if none of the columns must be declared NOT NULL */ { if (dict_index_get_n_fields(index) < n_cols) { return(false); } for (ulint i = 0; i < n_cols; i++) { dict_field_t* field; const char* col_name; ulint col_no; field = index->get_field(i); col_no = dict_col_get_no(field->col); if (field->prefix_len != 0) { /* We do not accept column prefix indexes here */ return(false); } if (check_null && (field->col->prtype & DATA_NOT_NULL)) { return(false); } col_name = col_names ? col_names[col_no] : table->get_col_name(col_no); if (0 != innobase_strcasecmp(columns[i], col_name)) { return(false); } if (types_idx && !cmp_cols_are_equal( index->get_col(i), types_idx->get_col(i), check_charsets)) { return(false); } } return(true); } /*********************************************************************//** Update the state of compression failure padding heuristics. This is called whenever a compression operation succeeds or fails. The caller must be holding info->mutex */ static void dict_index_zip_pad_update( /*======================*/ zip_pad_info_t* info, /*!< in/out: info to be updated */ ulint zip_threshold) /*!< in: zip threshold value */ { ulint total; ulint fail_pct; ut_ad(info); total = info->success + info->failure; ut_ad(total > 0); if (zip_threshold == 0) { /* User has just disabled the padding. */ return; } if (total < ZIP_PAD_ROUND_LEN) { /* We are in middle of a round. Do nothing. */ return; } /* We are at a 'round' boundary. Reset the values but first calculate fail rate for our heuristic. */ fail_pct = (info->failure * 100) / total; info->failure = 0; info->success = 0; if (fail_pct > zip_threshold) { /* Compression failures are more then user defined threshold. Increase the pad size to reduce chances of compression failures. */ ut_ad(info->pad % ZIP_PAD_INCR == 0); /* Only do increment if it won't increase padding beyond max pad size. */ if (info->pad + ZIP_PAD_INCR < (UNIV_PAGE_SIZE * zip_pad_max) / 100) { /* Use atomics even though we have the mutex. This is to ensure that we are able to read info->pad atomically. */ os_atomic_increment_ulint(&info->pad, ZIP_PAD_INCR); MONITOR_INC(MONITOR_PAD_INCREMENTS); } info->n_rounds = 0; } else { /* Failure rate was OK. Another successful round completed. */ ++info->n_rounds; /* If enough successful rounds are completed with compression failure rate in control, decrease the padding. */ if (info->n_rounds >= ZIP_PAD_SUCCESSFUL_ROUND_LIMIT && info->pad > 0) { ut_ad(info->pad % ZIP_PAD_INCR == 0); /* Use atomics even though we have the mutex. This is to ensure that we are able to read info->pad atomically. */ os_atomic_decrement_ulint(&info->pad, ZIP_PAD_INCR); info->n_rounds = 0; MONITOR_INC(MONITOR_PAD_DECREMENTS); } } } /*********************************************************************//** This function should be called whenever a page is successfully compressed. Updates the compression padding information. */ void dict_index_zip_success( /*===================*/ dict_index_t* index) /*!< in/out: index to be updated. */ { ut_ad(index); ulint zip_threshold = zip_failure_threshold_pct; if (!zip_threshold) { /* Disabled by user. */ return; } dict_index_zip_pad_lock(index); ++index->zip_pad.success; dict_index_zip_pad_update(&index->zip_pad, zip_threshold); dict_index_zip_pad_unlock(index); } /*********************************************************************//** This function should be called whenever a page compression attempt fails. Updates the compression padding information. */ void dict_index_zip_failure( /*===================*/ dict_index_t* index) /*!< in/out: index to be updated. */ { ut_ad(index); ulint zip_threshold = zip_failure_threshold_pct; if (!zip_threshold) { /* Disabled by user. */ return; } dict_index_zip_pad_lock(index); ++index->zip_pad.failure; dict_index_zip_pad_update(&index->zip_pad, zip_threshold); dict_index_zip_pad_unlock(index); } /*********************************************************************//** Return the optimal page size, for which page will likely compress. @return page size beyond which page might not compress */ ulint dict_index_zip_pad_optimal_page_size( /*=================================*/ dict_index_t* index) /*!< in: index for which page size is requested */ { ulint pad; ulint min_sz; ulint sz; ut_ad(index); if (!zip_failure_threshold_pct) { /* Disabled by user. */ return(UNIV_PAGE_SIZE); } /* We use atomics to read index->zip_pad.pad. Here we use zero as increment as are not changing the value of the 'pad'. */ pad = os_atomic_increment_ulint(&index->zip_pad.pad, 0); ut_ad(pad < UNIV_PAGE_SIZE); sz = UNIV_PAGE_SIZE - pad; /* Min size allowed by user. */ ut_ad(zip_pad_max < 100); min_sz = (UNIV_PAGE_SIZE * (100 - zip_pad_max)) / 100; return(ut_max(sz, min_sz)); } /** Convert a 32 bit integer table flags to the 32 bit FSP Flags. Fsp Flags are written into the tablespace header at the offset FSP_SPACE_FLAGS and are also stored in the fil_space_t::flags field. The following chart shows the translation of the low order bit. Other bits are the same. Low order bit | REDUNDANT | COMPACT | COMPRESSED | DYNAMIC dict_table_t::flags | 0 | 1 | 1 | 1 fil_space_t::flags | 0 | 0 | 1 | 1 @param[in] table_flags dict_table_t::flags @param[in] is_encrypted if it's an encrypted table @return tablespace flags (fil_space_t::flags) */ ulint dict_tf_to_fsp_flags( ulint table_flags, bool is_encrypted) { DBUG_EXECUTE_IF("dict_tf_to_fsp_flags_failure", return(ULINT_UNDEFINED);); bool has_atomic_blobs = DICT_TF_HAS_ATOMIC_BLOBS(table_flags); page_size_t page_size = dict_tf_get_page_size(table_flags); bool has_data_dir = DICT_TF_HAS_DATA_DIR(table_flags); bool is_shared = DICT_TF_HAS_SHARED_SPACE(table_flags); ut_ad(!page_size.is_compressed() || has_atomic_blobs); /* General tablespaces that are not compressed do not get the flags for dynamic row format (ATOMIC_BLOBS) */ if (is_shared && !page_size.is_compressed()) { has_atomic_blobs = false; } ulint fsp_flags = fsp_flags_init(page_size, has_atomic_blobs, has_data_dir, is_shared, false, is_encrypted); return(fsp_flags); } /*************************************************************//** Convert table flag to row format string. @return row format name. */ const char* dict_tf_to_row_format_string( /*=========================*/ ulint table_flag) /*!< in: row format setting */ { switch (dict_tf_get_rec_format(table_flag)) { case REC_FORMAT_REDUNDANT: return("ROW_TYPE_REDUNDANT"); case REC_FORMAT_COMPACT: return("ROW_TYPE_COMPACT"); case REC_FORMAT_COMPRESSED: return("ROW_TYPE_COMPRESSED"); case REC_FORMAT_DYNAMIC: return("ROW_TYPE_DYNAMIC"); } ut_error; return(0); } /** Look for any dictionary objects that are found in the given tablespace. @param[in] space_id Tablespace ID to search for. @return true if tablespace is empty. */ bool dict_space_is_empty(space_id_t space_id) { btr_pcur_t pcur; const rec_t* rec; mtr_t mtr; bool found = false; rw_lock_x_lock(dict_operation_lock); mutex_enter(&dict_sys->mutex); mtr_start(&mtr); for (rec = dict_startscan_system(&pcur, &mtr, SYS_TABLES); rec != NULL; rec = dict_getnext_system(&pcur, &mtr)) { const byte* field; ulint len; ulint space_id_for_table; field = rec_get_nth_field_old( rec, DICT_FLD__SYS_TABLES__SPACE, &len); ut_ad(len == 4); space_id_for_table = mach_read_from_4(field); if (space_id_for_table == space_id) { found = true; } } mtr_commit(&mtr); mutex_exit(&dict_sys->mutex); rw_lock_x_unlock(dict_operation_lock); return(!found); } /** Find the space_id for the given name in sys_tablespaces. @param[in] name Tablespace name to search for. @return the tablespace ID. */ space_id_t dict_space_get_id( const char* name) { btr_pcur_t pcur; const rec_t* rec; mtr_t mtr; ulint name_len = strlen(name); space_id_t id = SPACE_UNKNOWN; rw_lock_x_lock(dict_operation_lock); mutex_enter(&dict_sys->mutex); mtr_start(&mtr); for (rec = dict_startscan_system(&pcur, &mtr, SYS_TABLESPACES); rec != NULL; rec = dict_getnext_system(&pcur, &mtr)) { const byte* field; ulint len; field = rec_get_nth_field_old( rec, DICT_FLD__SYS_TABLESPACES__NAME, &len); ut_ad(len > 0); ut_ad(len < OS_FILE_MAX_PATH); if (len == name_len && ut_memcmp(name, field, len) == 0) { field = rec_get_nth_field_old( rec, DICT_FLD__SYS_TABLESPACES__SPACE, &len); ut_ad(len == 4); id = mach_read_from_4(field); /* This is normally called by dict_getnext_system() at the end of the index. */ btr_pcur_close(&pcur); break; } } mtr_commit(&mtr); mutex_exit(&dict_sys->mutex); rw_lock_x_unlock(dict_operation_lock); return(id); } #endif /* !UNIV_HOTBACKUP */ /** Determine the extent size (in pages) for the given table @param[in] table the table whose extent size is being calculated. @return extent size in pages (256, 128 or 64) */ page_no_t dict_table_extent_size( const dict_table_t* table) { const ulint mb_1 = 1024 * 1024; const ulint mb_2 = 2 * mb_1; const ulint mb_4 = 4 * mb_1; page_size_t page_size = dict_table_page_size(table); page_no_t pages_in_extent = FSP_EXTENT_SIZE; if (page_size.is_compressed()) { ulint disk_page_size = page_size.physical(); switch (disk_page_size) { case 1024: pages_in_extent = mb_1/1024; break; case 2048: pages_in_extent = mb_1/2048; break; case 4096: pages_in_extent = mb_1/4096; break; case 8192: pages_in_extent = mb_1/8192; break; case 16384: pages_in_extent = mb_1/16384; break; case 32768: pages_in_extent = mb_2/32768; break; case 65536: pages_in_extent = mb_4/65536; break; default: ut_ad(0); } } return(pages_in_extent); } /** Default constructor */ DDTableBuffer::DDTableBuffer() { init(); /* Check if we need to recover it, in case of crash */ btr_truncate_recover(m_index); } /** Destructor */ DDTableBuffer::~DDTableBuffer() { close(); } /* Create the search and replace tuples */ void DDTableBuffer::create_tuples() { const dict_col_t* col; dfield_t* dfield; byte* sys_buf; byte* id_buf; id_buf = static_cast<byte*>(mem_heap_alloc(m_heap, 8)); memset(id_buf, 0, sizeof *id_buf); m_search_tuple = dtuple_create(m_heap, 1); dict_index_copy_types(m_search_tuple, m_index, 1); dfield = dtuple_get_nth_field(m_search_tuple, 0); dfield_set_data(dfield, id_buf, 8); /* Allocate another memory for this tuple */ id_buf = static_cast<byte*>(mem_heap_alloc(m_heap, 8)); memset(id_buf, 0, sizeof *id_buf); m_replace_tuple = dtuple_create(m_heap, N_COLS); dict_table_copy_types(m_replace_tuple, m_index->table); dfield = dtuple_get_nth_field(m_replace_tuple, TABLE_ID_FIELD_NO); dfield_set_data(dfield, id_buf, 8); /* Initialize system fields, we always write fake value. */ sys_buf = static_cast<byte*>(mem_heap_alloc(m_heap, 8)); memset(sys_buf, 0xFF, 8); col = m_index->table->get_sys_col(DATA_ROW_ID); dfield = dtuple_get_nth_field(m_replace_tuple, dict_col_get_no(col)); dfield_set_data(dfield, sys_buf, DATA_ROW_ID_LEN); col = m_index->table->get_sys_col(DATA_TRX_ID); dfield = dtuple_get_nth_field(m_replace_tuple, dict_col_get_no(col)); dfield_set_data(dfield, sys_buf, DATA_TRX_ID_LEN); col = m_index->table->get_sys_col(DATA_ROLL_PTR); dfield = dtuple_get_nth_field(m_replace_tuple, dict_col_get_no(col)); dfield_set_data(dfield, sys_buf, DATA_ROLL_PTR_LEN); } /** Initialize the in-memory index */ void DDTableBuffer::init() { ut_ad(dict_table_is_comp(dict_sys->dynamic_metadata)); m_index = dict_sys->dynamic_metadata->first_index(); ut_ad(m_index->next() == NULL); ut_ad(m_index->n_uniq == 1); /* We don't need AHI for this table */ m_index->disable_ahi = true; m_index->cached = true; m_heap = mem_heap_create(500); m_dynamic_heap = mem_heap_create(1000); create_tuples(); } /** Initialize the id field of tuple @param[out] tuple the tuple to be initialized @param[in] id table id */ void DDTableBuffer::init_tuple_with_id( dtuple_t* tuple, table_id_t id) { dfield_t* dfield = dtuple_get_nth_field(tuple, TABLE_ID_FIELD_NO); void* data = dfield->data; mach_write_to_8(data, id); dfield_set_data(dfield, data, 8); } /** Free the things initialized in init() */ void DDTableBuffer::close() { mem_heap_free(m_heap); mem_heap_free(m_dynamic_heap); m_search_tuple = NULL; m_replace_tuple = NULL; } /** Prepare for a update on METADATA field @param[in] entry clustered index entry to replace rec @param[in] rec clustered index record @return update vector of differing fields without system columns, or NULL if there isn't any different field */ upd_t* DDTableBuffer::update_set_metadata( const dtuple_t* entry, const rec_t* rec) { ulint offsets[N_FIELDS + 1 + REC_OFFS_HEADER_SIZE]; upd_field_t* upd_field; const dfield_t* dfield; const byte* data; ulint len; upd_t* update; rec_offs_init(offsets); rec_offs_set_n_fields(offsets, N_FIELDS); rec_init_offsets_comp_ordinary(rec, false, m_index, offsets); ut_ad(!rec_get_deleted_flag(rec, 1)); data = rec_get_nth_field(rec, offsets, METADATA_FIELD_NO, &len); dfield = dtuple_get_nth_field(entry, METADATA_FIELD_NO); if (dfield_data_is_binary_equal(dfield, len, data)) { /* We don't need to update if all fields are equal. */ return(NULL); } update = upd_create(dtuple_get_n_fields(entry), m_dynamic_heap); /* There are only 2 fields in one row. Since the first field TABLE_ID should be equal, we can set the second METADATA field as diff directly */ upd_field = upd_get_nth_field(update, TABLE_ID_FIELD_NO); dfield_copy(&upd_field->new_val, dfield); upd_field_set_field_no(upd_field, METADATA_FIELD_NO, m_index, NULL); update->n_fields = 1; ut_ad(update->validate()); return(update); } /** Replace the dynamic metadata for a specific table @param[in] id table id @param[in] metadata the metadata we want to replace @param[in] len the metadata length @return DB_SUCCESS or error code */ dberr_t DDTableBuffer::replace( table_id_t id, const byte* metadata, ulint len) { dtuple_t* entry; dfield_t* dfield; btr_pcur_t pcur; mtr_t mtr; dberr_t error; ut_ad(mutex_own(&dict_persist->mutex)); init_tuple_with_id(m_search_tuple, id); init_tuple_with_id(m_replace_tuple, id); dfield = dtuple_get_nth_field(m_replace_tuple, METADATA_COL_NO); dfield_set_data(dfield, metadata, len); /* Other system fields have been initialized */ entry = row_build_index_entry(m_replace_tuple, NULL, m_index, m_dynamic_heap); /* Start to search for the to-be-replaced tuple */ mtr.start(); btr_pcur_open(m_index, m_search_tuple, PAGE_CUR_LE, BTR_MODIFY_TREE, &pcur, &mtr); if (page_rec_is_infimum(btr_pcur_get_rec(&pcur)) || btr_pcur_get_low_match(&pcur) < m_index->n_uniq) { /* The record was not found, so it's the first time we add the row for this table of id, we need to insert it */ static const ulint flags = (BTR_CREATE_FLAG | BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG); mtr.commit(); error = row_ins_clust_index_entry_low( flags, BTR_MODIFY_TREE, m_index, m_index->n_uniq, entry, 0, NULL, false); ut_a(error == DB_SUCCESS); mem_heap_empty(m_dynamic_heap); return(DB_SUCCESS); } ut_ad(!rec_get_deleted_flag(btr_pcur_get_rec(&pcur), true)); /* Prepare to update the record. */ ulint* cur_offsets = NULL; upd_t* update = update_set_metadata(entry, btr_pcur_get_rec(&pcur)); if (update != NULL) { big_rec_t* big_rec; static const ulint flags = (BTR_CREATE_FLAG | BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_POS_FLAG | BTR_KEEP_SYS_FLAG); error = btr_cur_pessimistic_update( flags, btr_pcur_get_btr_cur(&pcur), &cur_offsets, &m_dynamic_heap, m_dynamic_heap, &big_rec, update, 0, NULL, 0, &mtr); ut_a(error == DB_SUCCESS); /* We don't have big rec in this table */ ut_ad(!big_rec); } mtr.commit(); mem_heap_empty(m_dynamic_heap); return(DB_SUCCESS); } /** Remove the whole row for a specific table @param[in] id table id @return DB_SUCCESS or error code */ dberr_t DDTableBuffer::remove( table_id_t id) { btr_pcur_t pcur; mtr_t mtr; dberr_t error; ut_ad(mutex_own(&dict_persist->mutex)); init_tuple_with_id(m_search_tuple, id); mtr.start(); btr_pcur_open(m_index, m_search_tuple, PAGE_CUR_LE, BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE, &pcur, &mtr); if (!page_rec_is_infimum(btr_pcur_get_rec(&pcur)) && btr_pcur_get_low_match(&pcur) == m_index->n_uniq) { DEBUG_SYNC_C("delete_metadata_before"); btr_cur_pessimistic_delete( &error, false, btr_pcur_get_btr_cur(&pcur), BTR_CREATE_FLAG, false, &mtr); ut_ad(error == DB_SUCCESS); } mtr.commit(); return(DB_SUCCESS); } /** Truncate the table. We can call it after all the dynamic metadata has been written back to DD table */ void DDTableBuffer::truncate() { ut_ad(mutex_own(&dict_persist->mutex)); btr_truncate(m_index); } /** Get the buffered metadata for a specific table, the caller has to delete the returned std::string object by UT_DELETE @param[in] id table id @return the metadata got in a string object, if nothing, the string would be of length 0 */ std::string* DDTableBuffer::get( table_id_t id) { btr_cur_t cursor; mtr_t mtr; ulint len; byte* field = NULL; ut_ad(mutex_own(&dict_persist->mutex)); init_tuple_with_id(m_search_tuple, id); mtr.start(); btr_cur_search_to_nth_level(m_index, 0, m_search_tuple, PAGE_CUR_LE, BTR_SEARCH_LEAF, &cursor, 0, __FILE__, __LINE__, &mtr); if (cursor.low_match == dtuple_get_n_fields(m_search_tuple)) { ulint offsets[N_FIELDS + 1 + REC_OFFS_HEADER_SIZE]; rec_offs_init(offsets); rec_offs_set_n_fields(offsets, N_FIELDS); rec_t* rec = btr_cur_get_rec(&cursor); rec_init_offsets_comp_ordinary(rec, false, m_index, offsets); ut_ad(!rec_get_deleted_flag(rec, true)); /* Get the METADATA field */ field = rec_get_nth_field(rec, offsets, METADATA_FIELD_NO, &len); ut_ad(len != UNIV_SQL_NULL); } else { len = 0; } std::string* metadata = UT_NEW_NOKEY( std::string(reinterpret_cast<const char*>(field), len)); mtr.commit(); return(metadata); } /** Write MLOG_TABLE_DYNAMIC_META for persistent dynamic metadata of table @param[in] id table id @param[in] metadata metadata used to write the log @param[in,out] mtr mini-transaction */ void Persister::write_log( table_id_t id, const PersistentTableMetadata& metadata, mtr_t* mtr) const { byte* log_ptr; ulint size = get_write_size(metadata); ut_ad(size > 0); /* We will write the id in a much compressed format, which costs 1..11 bytes, and the MLOG_TABLE_DYNAMIC_META costs 1 byte, refer to mlog_write_initial_dict_log_record() as well */ log_ptr = mlog_open_metadata(mtr, 12 + size); ut_ad(log_ptr != NULL); log_ptr = mlog_write_initial_dict_log_record( MLOG_TABLE_DYNAMIC_META, id, log_ptr, mtr); ulint consumed = write(metadata, log_ptr, size); log_ptr += consumed; mlog_close(mtr, log_ptr); } /** Write the corrupted indexes of a table, we can pre-calculate the size by calling get_write_size() @param[in] metadata persistent data @param[out] buffer write buffer @param[in] size size of write buffer, should be at least get_write_size() @return the length of bytes written */ ulint CorruptedIndexPersister::write( const PersistentTableMetadata& metadata, byte* buffer, ulint size) const { ulint length = 0; corrupted_ids_t corrupted_ids = metadata.get_corrupted_indexes(); ulint num = corrupted_ids.size(); ut_ad(num < MAX_INDEXES); if (corrupted_ids.empty()) { return(0); } /* Write the PM_INDEX_CORRUPTED mark first */ mach_write_to_1(buffer, static_cast<byte>(PM_INDEX_CORRUPTED)); ++length; ++buffer; mach_write_to_1(buffer, num); ++length; ++buffer; for (ulint i = 0; i < num; ++i) { mach_write_to_4(buffer, corrupted_ids[i].m_space_id); mach_write_to_8(buffer + 4, corrupted_ids[i].m_index_id); length += INDEX_ID_LENGTH; buffer += INDEX_ID_LENGTH; ut_ad(length <= size); } return(length); } /** Pre-calculate the size of metadata to be written @param[in] metadata metadata to be written @return the size of metadata */ ulint CorruptedIndexPersister::get_write_size( const PersistentTableMetadata& metadata) const { ulint length = 0; corrupted_ids_t corrupted_ids = metadata.get_corrupted_indexes(); ut_ad(corrupted_ids.size() < MAX_INDEXES); if (corrupted_ids.empty()) { return(0); } /* PM_INDEX_CORRUPTED mark and number of corrupted indexes' ids */ length += 1 + 1; length += corrupted_ids.size() * INDEX_ID_LENGTH; return(length); } /** Read the corrupted indexes from buffer, and store them to metadata object @param[out] metadata metadata where we store the read data @param[in] buffer buffer to read @param[in] size size of buffer @param[out] corrupt true if we found something wrong in the buffer except incomplete buffer, otherwise false @return the bytes we read from the buffer if the buffer data is complete and we get everything, 0 if the buffer is incompleted */ ulint CorruptedIndexPersister::read( PersistentTableMetadata&metadata, const byte* buffer, ulint size, bool* corrupt) const { const byte* end = buffer + size; ulint consumed = 0; byte type; ulint num; *corrupt = false; /* It should contain PM_INDEX_CORRUPTED and number at least */ if (size <= 2) { return(0); } type = *buffer++; ++consumed; if (type != PM_INDEX_CORRUPTED) { *corrupt = true; return(consumed); } num = mach_read_from_1(buffer); ++consumed; ++buffer; if (num == 0 || num > MAX_INDEXES) { *corrupt = true; return(consumed); } if (buffer + num * INDEX_ID_LENGTH > end) { return(0); } for (ulint i = 0; i < num; ++i) { space_id_t space_id = mach_read_from_4(buffer); space_index_t index_id = mach_read_from_8(buffer + 4); metadata.add_corrupted_index(index_id_t(space_id, index_id)); buffer += INDEX_ID_LENGTH; consumed += INDEX_ID_LENGTH; } return(consumed); } /** Write the autoinc counter of a table, we can pre-calculate the size by calling get_write_size() @param[in] metadata persistent metadata @param[out] buffer write buffer @param[in] size size of write buffer, should be at least get_write_size() @return the length of bytes written */ ulint AutoIncPersister::write( const PersistentTableMetadata& metadata, byte* buffer, ulint size) const { ulint length = 0; ib_uint64_t autoinc = metadata.get_autoinc(); mach_write_to_1(buffer, static_cast<byte>(PM_TABLE_AUTO_INC)); ++length; ++buffer; ulint len = mach_u64_write_much_compressed(buffer, autoinc); length += len; buffer += len; ut_ad(length <= size); return(length); } /** Read the autoinc counter from buffer, and store them to metadata object @param[out] metadata metadata where we store the read data @param[in] buffer buffer to read @param[in] size size of buffer @param[out] corrupt true if we found something wrong in the buffer except incomplete buffer, otherwise false @return the bytes we read from the buffer if the buffer data is complete and we get everything, 0 if the buffer is incomplete */ ulint AutoIncPersister::read( PersistentTableMetadata& metadata, const byte* buffer, ulint size, bool* corrupt) const { const byte* end = buffer + size; ulint consumed = 0; byte type; ib_uint64_t autoinc; *corrupt = false; /* It should contain PM_TABLE_AUTO_INC and the counter at least */ if (size < 2) { return(0); } type = *buffer++; ++consumed; if (type != PM_TABLE_AUTO_INC) { *corrupt = true; return(consumed); } const byte* start = buffer; autoinc = mach_parse_u64_much_compressed(&start, end); if (start == NULL) { /* Just incomplete data, not corrupted */ return(0); } if (autoinc == 0) { metadata.set_autoinc(autoinc); } else { metadata.set_autoinc_if_bigger(autoinc); } consumed += start - buffer; ut_ad(consumed <= size); return(consumed); } /** Write redo logs for autoinc counter that is to be inserted or to update the existing one, if the counter is bigger than current one or the counter is 0 as the special mark. This function should be called only once at most per mtr, and work with the commit() to finish the complete logging & commit @param[in] table table @param[in] counter counter to be logged */ void AutoIncLogMtr::log( dict_table_t* table, ib_uint64_t counter) { ut_ad(!m_locked); rw_lock_s_lock(&dict_persist->lock); ut_d(m_locked = true); if (counter == 0) { /* We should always write the log for this special mark */ m_logged = true; } else { mutex_enter(table->autoinc_persisted_mutex); if (table->autoinc_persisted < counter) { dict_table_autoinc_persisted_update(table, counter); if (table->dirty_status == METADATA_DIRTY) { /* There are two cases when the dirty_status would be changed from METADATA_DIRTY to METADATA_BUFFERED. One is checkpoint, but the rw-lock in dict_persist should prevent checkpoint changing the status. The other is dict_table_set_and_persist_autoinc(), which would persist in-memory dynamic metadata to DDTableBuffer. But it happens only in DDL, when there should not be any concurrent DML. */ ut_ad(table->in_dirty_dict_tables_list); } else { dict_table_mark_dirty(table); } m_logged = true; } mutex_exit(table->autoinc_persisted_mutex); } if (m_logged) { PersistentTableMetadata metadata(table->id); metadata.set_autoinc(counter); Persister* persister = dict_persist->persisters->get( PM_TABLE_AUTO_INC); /* No need to flush the logs now for performance reasons. */ persister->write_log(table->id, metadata, m_mtr); } else { rw_lock_s_unlock(&dict_persist->lock); ut_d(m_locked = false); } } /** Commit the internal mtr, and some cleanup if necessary */ void AutoIncLogMtr::commit() { m_mtr->commit(); if (m_logged) { ut_ad(m_locked); ut_d(m_locked = false); rw_lock_s_unlock(&dict_persist->lock); } } /** Destructor */ Persisters::~Persisters() { persisters_t::iterator iter; for (iter = m_persisters.begin(); iter != m_persisters.end(); ++iter) { UT_DELETE(iter->second); } } /** Get the persister object with specified type @param[in] type persister type @return Persister object required or NULL if not found */ Persister* Persisters::get( persistent_type_t type) const { ut_ad(type > PM_SMALLEST_TYPE); ut_ad(type < PM_BIGGEST_TYPE); persisters_t::const_iterator iter = m_persisters.find(type); return(iter == m_persisters.end() ? NULL : iter->second); } /** Add a specified persister of type, we will allocate the Persister if there is no such persister exist, otherwise do nothing and return the existing one @param[in] type persister type @return the persister of type */ Persister* Persisters::add( persistent_type_t type) { ut_ad(type > PM_SMALLEST_TYPE); ut_ad(type < PM_BIGGEST_TYPE); Persister* persister = get(type); if (persister != NULL) { return(persister); } switch (type) { case PM_INDEX_CORRUPTED: persister = UT_NEW_NOKEY(CorruptedIndexPersister()); break; case PM_TABLE_AUTO_INC: persister = UT_NEW_NOKEY(AutoIncPersister()); break; default: ut_ad(0); break; } m_persisters.insert(std::make_pair(type, persister)); return(persister); } /** Remove a specified persister of type, we will free the Persister @param[in] type persister type */ void Persisters::remove( persistent_type_t type) { persisters_t::iterator iter = m_persisters.find(type); if (iter != m_persisters.end()) { UT_DELETE(iter->second); m_persisters.erase(iter); } } /** Close SDI table. @param[in] table the in-meory SDI table object */ UNIV_INLINE void dict_sdi_close_table( dict_table_t* table) { ut_ad(dict_table_is_sdi(table->id)); dict_table_close(table, true, false); } /* TODO: Remove this function after WL#7412. This function is use only in IMPORT/EXPORT as of now. */ /** Retrieve in-memory index for SDI table. @param[in] tablespace_id innodb tablespace id @param[in] copy_num SDI table copy @return dict_index_t structure or NULL*/ dict_index_t* dict_sdi_get_index( space_id_t tablespace_id, uint32_t copy_num) { ut_ad(copy_num < MAX_SDI_COPIES); dict_table_t* table = dd_table_open_on_id( dict_sdi_get_table_id(tablespace_id, copy_num), nullptr, nullptr, true); if (table != NULL) { dict_sdi_close_table(table); return(table->first_index()); } return(NULL); } /** Retrieve in-memory table object for SDI table. @param[in] tablespace_id innodb tablespace id @param[in] copy_num SDI table copy @param[in] dict_locked true if dict_sys mutex is acquired @return dict_table_t structure */ dict_table_t* dict_sdi_get_table( space_id_t tablespace_id, uint32_t copy_num, bool dict_locked) { ut_ad(copy_num < MAX_SDI_COPIES); dict_table_t* table = dd_table_open_on_id( dict_sdi_get_table_id(tablespace_id, copy_num), NULL, NULL, dict_locked); return(table); } /* TODO: WL#7141 Check if we can disable the locking on the SDI tables altogether. If purge or rollback needs to access the SDI table, it can create the SDI table object for the table_id on demand. */ /** Remove the SDI table from table cache. @param[in] space_id InnoDB tablespace_id @param[in,out] sdi_tables Array of sdi table @param[in] dict_locked true if dict_sys mutex acquired */ void dict_sdi_remove_from_cache( space_id_t space_id, dict_table_t** sdi_tables, bool dict_locked) { if (space_id == SYSTEM_TABLE_SPACE) { return; } for (uint32_t copy_num = 0; copy_num < MAX_SDI_COPIES; ++copy_num) { dict_table_t* sdi_table; if (sdi_tables == NULL || sdi_tables[copy_num] == NULL) { /* Remove SDI table from table cache for copy 0. */ /* TODO: newDD: Need MDL lock? */ sdi_table = dd_table_open_on_id_in_mem( dict_sdi_get_table_id(space_id, copy_num), dict_locked); if (sdi_table) { dd_table_close(sdi_table, nullptr, nullptr, dict_locked); } } else { dd_table_close(sdi_tables[copy_num], nullptr, nullptr, dict_locked); sdi_table = sdi_tables[copy_num]; } if (sdi_table) { dict_table_remove_from_cache(sdi_table); } } } /** Change the table_id of SYS_* tables if they have been created after an earlier upgrade. This will update the table_id by adding DICT_MAX_DD_TABLES */ void dict_table_change_id_sys_tables() { ut_ad(mutex_own(&dict_sys->mutex)); for (uint32_t i = 0; i < SYS_NUM_SYSTEM_TABLES; i++) { dict_table_t* system_table = dict_table_get_low(SYSTEM_TABLE_NAME[i]); ut_a(system_table != nullptr); ut_ad(dict_sys_table_id[i] == system_table->id); if (system_table->id >= INNODB_SYS_TABLE_ID_MAX) { /* During upgrade, table_id of user tables is also moved by DICT_MAX_DD_TABLES. See dict_load_table_one()*/ table_id_t new_table_id = system_table->id + DICT_MAX_DD_TABLES; dict_table_change_id_in_cache(system_table, new_table_id); dict_sys_table_id[i] = system_table->id; } } } /** Evict all tables that are loaded for applying purge. Since we move the offset of all table ids during upgrade, these tables cannot exist in cache. Also change table_ids of SYS_* tables if they are upgraded from earlier versions */ void dict_upgrade_evict_tables_cache() { dict_table_t* table; rw_lock_x_lock(dict_operation_lock); mutex_enter(&dict_sys->mutex); ut_ad(dict_lru_validate()); ut_ad(srv_is_upgrade_mode); /* Move all tables from non-LRU to LRU */ for (table = UT_LIST_GET_LAST(dict_sys->table_non_LRU); table != NULL;) { dict_table_t* prev_table; prev_table = UT_LIST_GET_PREV(table_LRU, table); if (!dict_table_is_system(table->id)) { DBUG_EXECUTE_IF("dd_upgrade", ib::info() << "Moving table " << table->name << " from non-LRU to LRU"; ); dict_table_move_from_non_lru_to_lru(table); } table = prev_table; } for (table = UT_LIST_GET_LAST(dict_sys->table_LRU); table != NULL;) { dict_table_t* prev_table; prev_table = UT_LIST_GET_PREV(table_LRU, table); ut_ad(dict_table_can_be_evicted(table)); DBUG_EXECUTE_IF("dd_upgrade", ib::info() << "Evicting table: LRU: " << table->name; ); dict_table_remove_from_cache_low(table, TRUE); table = prev_table; } dict_table_change_id_sys_tables(); mutex_exit(&dict_sys->mutex); rw_lock_x_unlock(dict_operation_lock); } /** Build the table_id array of SYS_* tables. This array is used to determine if a table is InnoDB SYSTEM table or not. */ void dict_sys_table_id_build() { mutex_enter(&dict_sys->mutex); for (uint32_t i = 0; i < SYS_NUM_SYSTEM_TABLES; i++) { dict_table_t* system_table = dict_table_get_low(SYSTEM_TABLE_NAME[i]); ut_a(system_table != nullptr); dict_sys_table_id[i] = system_table->id; } mutex_exit(&dict_sys->mutex); } /** @return true if table is InnoDB SYS_* table @param[in] table_id table id */ bool dict_table_is_system(table_id_t table_id) { for (uint32_t i = 0; i < SYS_NUM_SYSTEM_TABLES; i++) { if (table_id == dict_sys_table_id[i]) { return(true); } } return(false); }