drivers/iio/adc/aspeed_adc.c (390 lines of code) (raw):
// SPDX-License-Identifier: GPL-2.0-only
/*
* Aspeed AST2400/2500/2600 ADC
*
* Copyright (C) 2017 Google, Inc.
* Copyright (C) ASPEED Technology Inc.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/iio/iio.h>
#include <linux/iio/driver.h>
#include <linux/iopoll.h>
#define ASPEED_RESOLUTION_BITS 10
#define ASPEED_CLOCKS_PER_SAMPLE 12
#define ASPEED_REG_ENGINE_CONTROL 0x00
#define ASPEED_REG_INTERRUPT_CONTROL 0x04
#define ASPEED_REG_VGA_DETECT_CONTROL 0x08
#define ASPEED_REG_CLOCK_CONTROL 0x0C
#define ASPEED_REG_COMPENSATION_TRIM 0xC4
#define ASPEED_REG_MAX 0xC0
//ast2600
#define REF_VLOTAGE_2500mV 0
#define REF_VLOTAGE_1200mV (1 << 6)
#define REF_VLOTAGE_1550mV (2 << 6)
#define REF_VLOTAGE_900mV (3 << 6)
#define ASPEED_AUTOPENSATING BIT(5)
#define ASPEED_OPERATION_MODE_POWER_DOWN (0x0 << 1)
#define ASPEED_OPERATION_MODE_STANDBY (0x1 << 1)
#define ASPEED_OPERATION_MODE_NORMAL (0x7 << 1)
#define ASPEED_ENGINE_ENABLE BIT(0)
#define ASPEED_ADC_CTRL_INIT_RDY BIT(8)
#define ASPEED_CTRL_COMPENSATION BIT(4)
#define ASPEED_ADC_CTRL_CH_EN(n) (1 << (16 + n))
#define ASPEED_ADC_CTRL_CH_EN_ALL GENMASK(31, 16)
#define ASPEED_ADC_INIT_POLLING_TIME 500
#define ASPEED_ADC_INIT_TIMEOUT 500000
struct aspeed_adc_trim_locate {
unsigned int scu_offset;
unsigned int bit_offset;
unsigned int bit_mask;
};
struct aspeed_adc_model_data {
const char *model_name;
unsigned int min_sampling_rate; // Hz
unsigned int max_sampling_rate; // Hz
unsigned int vref_voltage; // mV
bool wait_init_sequence;
struct iio_chan_spec const *channels;
int num_channels;
};
struct aspeed_adc_data {
struct device *dev;
void __iomem *base;
spinlock_t clk_lock;
struct regmap *scu;
struct clk_hw *clk_prescaler;
struct clk_hw *clk_scaler;
struct reset_control *rst;
int cv;
};
#define ASPEED_CHAN(_idx, _data_reg_addr) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = (_idx), \
.address = (_data_reg_addr), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
}
static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
ASPEED_CHAN(0, 0x10),
ASPEED_CHAN(1, 0x12),
ASPEED_CHAN(2, 0x14),
ASPEED_CHAN(3, 0x16),
ASPEED_CHAN(4, 0x18),
ASPEED_CHAN(5, 0x1A),
ASPEED_CHAN(6, 0x1C),
ASPEED_CHAN(7, 0x1E),
ASPEED_CHAN(8, 0x20),
ASPEED_CHAN(9, 0x22),
ASPEED_CHAN(10, 0x24),
ASPEED_CHAN(11, 0x26),
ASPEED_CHAN(12, 0x28),
ASPEED_CHAN(13, 0x2A),
ASPEED_CHAN(14, 0x2C),
ASPEED_CHAN(15, 0x2E),
};
static const struct iio_chan_spec ast2600_adc_iio_channels[] = {
ASPEED_CHAN(0, 0x10),
ASPEED_CHAN(1, 0x12),
ASPEED_CHAN(2, 0x14),
ASPEED_CHAN(3, 0x16),
ASPEED_CHAN(4, 0x18),
ASPEED_CHAN(5, 0x1A),
ASPEED_CHAN(6, 0x1C),
ASPEED_CHAN(7, 0x1E),
};
static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct aspeed_adc_data *data = iio_priv(indio_dev);
const struct aspeed_adc_model_data *model_data =
of_device_get_match_data(data->dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (!strcmp(model_data->model_name, "ast2600-adc")) {
*val = readw(data->base + chan->address) + data->cv;
}
else {
*val = readw(data->base + chan->address);
}
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = model_data->vref_voltage;
*val2 = ASPEED_RESOLUTION_BITS;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = clk_get_rate(data->clk_scaler->clk) /
ASPEED_CLOCKS_PER_SAMPLE;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct aspeed_adc_data *data = iio_priv(indio_dev);
const struct aspeed_adc_model_data *model_data =
of_device_get_match_data(data->dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val < model_data->min_sampling_rate ||
val > model_data->max_sampling_rate)
return -EINVAL;
clk_set_rate(data->clk_scaler->clk,
val * ASPEED_CLOCKS_PER_SAMPLE);
return 0;
case IIO_CHAN_INFO_SCALE:
case IIO_CHAN_INFO_RAW:
/*
* Technically, these could be written but the only reasons
* for doing so seem better handled in userspace. EPERM is
* returned to signal this is a policy choice rather than a
* hardware limitation.
*/
return -EPERM;
default:
return -EINVAL;
}
}
static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
unsigned int reg, unsigned int writeval,
unsigned int *readval)
{
struct aspeed_adc_data *data = iio_priv(indio_dev);
if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
return -EINVAL;
*readval = readl(data->base + reg);
return 0;
}
static const struct iio_info aspeed_adc_iio_info = {
.read_raw = aspeed_adc_read_raw,
.write_raw = aspeed_adc_write_raw,
.debugfs_reg_access = aspeed_adc_reg_access,
};
static int aspeed_adc_probe(struct platform_device *pdev)
{
struct iio_dev *indio_dev;
struct aspeed_adc_data *data;
struct aspeed_adc_trim_locate trim_locate;
const struct aspeed_adc_model_data *model_data;
const char *clk_parent_name;
char prescaler_clk_name[32];
char scaler_clk_name[32];
int ret;
u32 eng_ctrl = 0;
u32 adc_engine_control_reg_val;
u32 scu_otp;
u32 trim;
u32 compensating_trim;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->dev = &pdev->dev;
data->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(data->base))
return PTR_ERR(data->base);
/* Register ADC clock prescaler with source specified by device tree. */
spin_lock_init(&data->clk_lock);
clk_parent_name = of_clk_get_parent_name(pdev->dev.of_node, 0);
snprintf(prescaler_clk_name, sizeof(prescaler_clk_name), "prescaler-%s",
pdev->name);
data->clk_prescaler = clk_hw_register_divider(
&pdev->dev, prescaler_clk_name, clk_parent_name, 0,
data->base + ASPEED_REG_CLOCK_CONTROL,
17, 15, 0, &data->clk_lock);
if (IS_ERR(data->clk_prescaler))
return PTR_ERR(data->clk_prescaler);
snprintf(scaler_clk_name, sizeof(scaler_clk_name), "scaler-%s", pdev->name);
/*
* Register ADC clock scaler downstream from the prescaler. Allow rate
* setting to adjust the prescaler as well.
*/
data->clk_scaler = clk_hw_register_divider(
&pdev->dev, scaler_clk_name, prescaler_clk_name,
CLK_SET_RATE_PARENT,
data->base + ASPEED_REG_CLOCK_CONTROL,
0, 10, 0, &data->clk_lock);
if (IS_ERR(data->clk_scaler)) {
ret = PTR_ERR(data->clk_scaler);
goto scaler_error;
}
data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
if (IS_ERR(data->rst)) {
dev_err(&pdev->dev,
"invalid or missing reset controller device tree entry");
ret = PTR_ERR(data->rst);
goto reset_error;
}
reset_control_deassert(data->rst);
model_data = of_device_get_match_data(&pdev->dev);
if (!of_property_read_u32(pdev->dev.of_node, "ref_voltage",
(u32 *)&model_data->vref_voltage)) {
if (model_data->vref_voltage == 2500)
eng_ctrl = REF_VLOTAGE_2500mV;
else if (model_data->vref_voltage == 1200)
eng_ctrl = REF_VLOTAGE_1200mV;
else if ((model_data->vref_voltage >= 1550) &&
(model_data->vref_voltage <= 2700))
eng_ctrl = REF_VLOTAGE_1550mV;
else if ((model_data->vref_voltage >= 900) &&
(model_data->vref_voltage <= 1650))
eng_ctrl = REF_VLOTAGE_900mV;
else {
printk("error ref voltage %d \n", model_data->vref_voltage);
eng_ctrl = 0;
}
} else
eng_ctrl = 0;
if (model_data->wait_init_sequence) {
/* Enable engine in normal mode. */
eng_ctrl |= ASPEED_OPERATION_MODE_NORMAL | ASPEED_ENGINE_ENABLE;
writel(eng_ctrl, data->base + ASPEED_REG_ENGINE_CONTROL);
/* Wait for initial sequence complete. */
ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
adc_engine_control_reg_val,
adc_engine_control_reg_val &
ASPEED_ADC_CTRL_INIT_RDY,
ASPEED_ADC_INIT_POLLING_TIME,
ASPEED_ADC_INIT_TIMEOUT);
if (ret)
goto poll_timeout_error;
}
/*
* The auto compensating sensing mode is not ready for AST2600.
* Need to set the trimming data for Compensating sensing mode.
*/
if (!strcmp(model_data->model_name, "ast2600-adc")) {
data->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2600-scu");
if (IS_ERR(data->scu)) {
dev_err(&pdev->dev, "failed to find SCU regmap\n");
ret = PTR_ERR(data->scu);
goto syscon_regmap_error;
}
eng_ctrl = readl(data->base + ASPEED_REG_ENGINE_CONTROL);
eng_ctrl |= (ASPEED_OPERATION_MODE_NORMAL | ASPEED_ENGINE_ENABLE);
/* Trimming data setting */
ret = of_property_read_u32_array(data->dev->of_node, "trim_locate",
(u32 *)&trim_locate,
sizeof(trim_locate) / 4);
if (ret < 0) {
printk(KERN_WARNING "Get trim_locate fail, ret %d\n", ret);
trim = 0x0;
} else {
if (regmap_read(data->scu, trim_locate.scu_offset, &scu_otp)) {
printk(KERN_WARNING "read scu trim value fail \n");
trim = 0x0;
} else {
trim = (scu_otp >> trim_locate.bit_offset) &
trim_locate.bit_mask;
}
}
if (trim == 0x0) {
trim = 0x8;
}
dev_info(data->dev, "trim %d \n", trim);
compensating_trim = readl(data->base + ASPEED_REG_COMPENSATION_TRIM);
compensating_trim = (compensating_trim & (~(GENMASK(3, 0)))) | trim;
writel(compensating_trim, data->base + ASPEED_REG_COMPENSATION_TRIM);
/* Compensating Sensing Mode */
writel(eng_ctrl | ASPEED_CTRL_COMPENSATION,
data->base + ASPEED_REG_ENGINE_CONTROL);
writel(eng_ctrl | ASPEED_CTRL_COMPENSATION | ASPEED_ADC_CTRL_CH_EN(0),
data->base + ASPEED_REG_ENGINE_CONTROL);
mdelay(1);
data->cv = 0x200 - (readl(data->base + 0x10) & GENMASK(9, 0));
/* Disable Compensating Sensing mode */
writel(eng_ctrl & (~ASPEED_CTRL_COMPENSATION),
data->base + ASPEED_REG_ENGINE_CONTROL);
} else {
// do compensating calculation use ch 0
writel(eng_ctrl | ASPEED_OPERATION_MODE_NORMAL |
ASPEED_ENGINE_ENABLE | ASPEED_AUTOPENSATING,
data->base + ASPEED_REG_ENGINE_CONTROL);
writel(eng_ctrl | ASPEED_OPERATION_MODE_NORMAL | BIT(16) |
ASPEED_ENGINE_ENABLE | ASPEED_AUTOPENSATING,
data->base + ASPEED_REG_ENGINE_CONTROL);
mdelay(1);
data->cv = 0x200 - (readl(data->base + 0x10) & GENMASK(9, 0));
writel(eng_ctrl | ASPEED_OPERATION_MODE_NORMAL |
ASPEED_ENGINE_ENABLE | ASPEED_AUTOPENSATING,
data->base + ASPEED_REG_ENGINE_CONTROL);
}
dev_info(data->dev, "cv %d \n", data->cv);
/* Start all channels in normal mode. */
ret = clk_prepare_enable(data->clk_scaler->clk);
if (ret)
goto clk_enable_error;
adc_engine_control_reg_val = eng_ctrl | ASPEED_ADC_CTRL_CH_EN_ALL |
ASPEED_OPERATION_MODE_NORMAL | ASPEED_ENGINE_ENABLE;
writel(adc_engine_control_reg_val,
data->base + ASPEED_REG_ENGINE_CONTROL);
model_data = of_device_get_match_data(&pdev->dev);
indio_dev->name = model_data->model_name;
indio_dev->dev.parent = &pdev->dev;
indio_dev->info = &aspeed_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = model_data->channels;
indio_dev->num_channels = model_data->num_channels;
ret = iio_device_register(indio_dev);
if (ret)
goto iio_register_error;
return 0;
iio_register_error:
writel(ASPEED_OPERATION_MODE_POWER_DOWN,
data->base + ASPEED_REG_ENGINE_CONTROL);
clk_disable_unprepare(data->clk_scaler->clk);
clk_enable_error:
syscon_regmap_error:
poll_timeout_error:
reset_control_assert(data->rst);
reset_error:
clk_hw_unregister_divider(data->clk_scaler);
scaler_error:
clk_hw_unregister_divider(data->clk_prescaler);
return ret;
}
static int aspeed_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct aspeed_adc_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
writel(ASPEED_OPERATION_MODE_POWER_DOWN,
data->base + ASPEED_REG_ENGINE_CONTROL);
clk_disable_unprepare(data->clk_scaler->clk);
reset_control_assert(data->rst);
clk_hw_unregister_divider(data->clk_scaler);
clk_hw_unregister_divider(data->clk_prescaler);
return 0;
}
static const struct aspeed_adc_model_data ast2400_model_data = {
.model_name = "ast2400-adc",
.vref_voltage = 2500, // mV
.min_sampling_rate = 10000,
.max_sampling_rate = 500000,
.channels = aspeed_adc_iio_channels,
.num_channels = 16,
};
static const struct aspeed_adc_model_data ast2500_model_data = {
.model_name = "ast2500-adc",
.vref_voltage = 1800, // mV
.min_sampling_rate = 1,
.max_sampling_rate = 1000000,
.wait_init_sequence = true,
.channels = aspeed_adc_iio_channels,
.num_channels = 16,
};
static const struct aspeed_adc_model_data ast2600_model_data = {
.model_name = "ast2600-adc",
.vref_voltage = 2500, // mV
.min_sampling_rate = 1,
.max_sampling_rate = 1000000,
.wait_init_sequence = true,
.channels = ast2600_adc_iio_channels,
.num_channels = 8,
};
static const struct of_device_id aspeed_adc_matches[] = {
{ .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
{ .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
{ .compatible = "aspeed,ast2600-adc", .data = &ast2600_model_data },
{},
};
MODULE_DEVICE_TABLE(of, aspeed_adc_matches);
static struct platform_driver aspeed_adc_driver = {
.probe = aspeed_adc_probe,
.remove = aspeed_adc_remove,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = aspeed_adc_matches,
}
};
module_platform_driver(aspeed_adc_driver);
MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
MODULE_LICENSE("GPL");