ax/models/torch/fully_bayesian.py [247:263]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Xs: List[Tensor],
    Ys: List[Tensor],
    Yvars: List[Tensor],
    task_features: List[int],
    fidelity_features: List[int],
    metric_names: List[str],
    state_dict: Optional[Dict[str, Tensor]] = None,
    refit_model: bool = True,
    use_input_warping: bool = False,
    use_loocv_pseudo_likelihood: bool = False,
    num_samples: int = 256,
    warmup_steps: int = 512,
    thinning: int = 16,
    max_tree_depth: int = 6,
    disable_progbar: bool = False,
    gp_kernel: str = "matern",
    verbose: bool = False,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



ax/models/torch/fully_bayesian.py [323:339]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Xs: List[Tensor],
    Ys: List[Tensor],
    Yvars: List[Tensor],
    task_features: List[int],
    fidelity_features: List[int],
    metric_names: List[str],
    state_dict: Optional[Dict[str, Tensor]] = None,
    refit_model: bool = True,
    use_input_warping: bool = False,
    use_loocv_pseudo_likelihood: bool = False,
    num_samples: int = 256,
    warmup_steps: int = 512,
    thinning: int = 16,
    max_tree_depth: int = 6,
    disable_progbar: bool = False,
    gp_kernel: str = "matern",
    verbose: bool = False,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



