ax/modelbridge/transforms/centered_unit_x.py [30:46]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def __init__(
        self,
        search_space: SearchSpace,
        observation_features: List[ObservationFeatures],
        observation_data: List[ObservationData],
        modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None,
        config: Optional[TConfig] = None,
    ) -> None:
        # Identify parameters that should be transformed
        self.bounds: Dict[str, Tuple[float, float]] = {}
        for p_name, p in search_space.parameters.items():
            if (
                isinstance(p, RangeParameter)
                and p.parameter_type == ParameterType.FLOAT
                and not p.log_scale
            ):
                self.bounds[p_name] = (p.lower, p.upper)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



ax/modelbridge/transforms/unit_x.py [31:47]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def __init__(
        self,
        search_space: SearchSpace,
        observation_features: List[ObservationFeatures],
        observation_data: List[ObservationData],
        modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None,
        config: Optional[TConfig] = None,
    ) -> None:
        # Identify parameters that should be transformed
        self.bounds: Dict[str, Tuple[float, float]] = {}
        for p_name, p in search_space.parameters.items():
            if (
                isinstance(p, RangeParameter)
                and p.parameter_type == ParameterType.FLOAT
                and not p.log_scale
            ):
                self.bounds[p_name] = (p.lower, p.upper)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



