in ax/benchmark2/benchmark_result.py [0:0]
def _get_trace(scheduler: Scheduler) -> np.ndarray:
if scheduler.experiment.is_moo_problem:
return np.array(
[
scheduler.get_hypervolume(
trial_indices=[*range(i + 1)], use_model_predictions=False
)
if i != 0
else 0
# TODO[mpolson64] on i=0 we get an error with SearchspaceToChoice
for i in range(len(scheduler.experiment.trials))
],
)
best_trials = [
scheduler.get_best_trial(
trial_indices=[*range(i + 1)], use_model_predictions=False
)
for i in range(len(scheduler.experiment.trials))
]
return np.array(
[
not_none(not_none(trial)[2])[0][
not_none(
scheduler.experiment.optimization_config
).objective.metric.name
]
for trial in best_trials
if trial is not None and not_none(trial)[2] is not None
]
)