ax/modelbridge/torch.py (430 lines of code) (raw):

#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union import numpy as np import torch from ax.core.data import Data from ax.core.experiment import Experiment from ax.core.observation import ObservationData, ObservationFeatures from ax.core.optimization_config import ( TRefPoint, MultiObjectiveOptimizationConfig, OptimizationConfig, ) from ax.core.outcome_constraint import ComparisonOp, ObjectiveThreshold from ax.core.search_space import SearchSpace from ax.core.types import TCandidateMetadata, TGenMetadata from ax.modelbridge.array import FIT_MODEL_ERROR, ArrayModelBridge from ax.modelbridge.modelbridge_utils import ( extract_objective_thresholds, validate_and_apply_final_transform, SearchSpaceDigest, ) from ax.modelbridge.transforms.base import Transform from ax.models.torch.botorch_modular.model import BoTorchModel from ax.models.torch.botorch_moo import MultiObjectiveBotorchModel from ax.models.torch.botorch_moo_defaults import infer_objective_thresholds from ax.models.torch_base import TorchModel from ax.models.types import TConfig from ax.utils.common.typeutils import checked_cast, not_none from torch import Tensor # pyre-fixme[13]: Attribute `model` is never initialized. class TorchModelBridge(ArrayModelBridge): """A model bridge for using torch-based models. Specifies an interface that is implemented by TorchModel. In particular, model should have methods fit, predict, and gen. See TorchModel for the API for each of these methods. Requires that all parameters have been transformed to RangeParameters or FixedParameters with float type and no log scale. This class converts Ax parameter types to torch tensors before passing them to the model. """ model: Optional[TorchModel] _default_model_gen_options: TConfig def __init__( self, experiment: Experiment, search_space: SearchSpace, data: Data, model: TorchModel, transforms: List[Type[Transform]], transform_configs: Optional[Dict[str, TConfig]] = None, torch_dtype: Optional[torch.dtype] = None, # noqa T484 torch_device: Optional[torch.device] = None, status_quo_name: Optional[str] = None, status_quo_features: Optional[ObservationFeatures] = None, optimization_config: Optional[OptimizationConfig] = None, fit_out_of_design: bool = False, objective_thresholds: Optional[TRefPoint] = None, default_model_gen_options: Optional[TConfig] = None, ) -> None: if torch_dtype is None: # pragma: no cover torch_dtype = torch.float # noqa T484 self.dtype = torch_dtype self.device = torch_device self._default_model_gen_options = default_model_gen_options or {} # Handle init for multi-objective optimization. self.is_moo_problem = False if optimization_config or (experiment and experiment.optimization_config): optimization_config = not_none( optimization_config or experiment.optimization_config ) self.is_moo_problem = optimization_config.is_moo_problem if objective_thresholds: if not self.is_moo_problem: raise ValueError( "objective_thresholds are only supported for multi objective " "optimization." ) optimization_config = checked_cast( MultiObjectiveOptimizationConfig, optimization_config ) optimization_config = optimization_config.clone_with_args( objective_thresholds=objective_thresholds ) super().__init__( experiment=experiment, search_space=search_space, data=data, model=model, transforms=transforms, transform_configs=transform_configs, status_quo_name=status_quo_name, status_quo_features=status_quo_features, optimization_config=optimization_config, fit_out_of_design=fit_out_of_design, ) def _validate_observation_data( self, observation_data: List[ObservationData] ) -> None: if len(observation_data) == 0: raise ValueError( "Torch models cannot be fit without observation data. Possible " "reasons include empty data being passed to the model's constructor " "or data being excluded because it is out-of-design. Try setting " "`fit_out_of_design`=True during construction to fix the latter." ) def _fit( self, model: TorchModel, search_space: SearchSpace, observation_features: List[ObservationFeatures], observation_data: List[ObservationData], ) -> None: # pragma: no cover self._validate_observation_data(observation_data) super()._fit( model=model, search_space=search_space, observation_features=observation_features, observation_data=observation_data, ) def _model_evaluate_acquisition_function( self, X: np.ndarray, search_space_digest: SearchSpaceDigest, objective_weights: np.ndarray, objective_thresholds: Optional[np.ndarray] = None, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, fixed_features: Optional[Dict[int, float]] = None, pending_observations: Optional[List[np.ndarray]] = None, acq_options: Optional[Dict[str, Any]] = None, ) -> np.ndarray: if not self.model: # pragma: no cover raise ValueError( FIT_MODEL_ERROR.format(action="_model_evaluate_acquisition_function") ) obj_w, oc_c, l_c, pend_obs, obj_thresh = validate_and_apply_final_transform( objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, pending_observations=pending_observations, objective_thresholds=objective_thresholds, final_transform=self._array_to_tensor, ) evals = not_none(self.model).evaluate_acquisition_function( X=self._array_to_tensor(X), search_space_digest=search_space_digest, objective_weights=obj_w, objective_thresholds=obj_thresh, outcome_constraints=oc_c, linear_constraints=l_c, fixed_features=fixed_features, pending_observations=pend_obs, acq_options=acq_options, ) return evals.detach().cpu().clone().numpy() def _model_fit( self, model: TorchModel, Xs: List[np.ndarray], Ys: List[np.ndarray], Yvars: List[np.ndarray], search_space_digest: SearchSpaceDigest, metric_names: List[str], candidate_metadata: Optional[List[List[TCandidateMetadata]]], ) -> None: self.model = model # Convert numpy arrays to torch tensors # pyre-fixme[35]: Target cannot be annotated. Xs: List[Tensor] = self._array_list_to_tensors(Xs) # pyre-fixme[35]: Target cannot be annotated. Ys: List[Tensor] = self._array_list_to_tensors(Ys) # pyre-fixme[35]: Target cannot be annotated. Yvars: List[Tensor] = self._array_list_to_tensors(Yvars) # pyre-fixme[16]: `Optional` has no attribute `fit`. self.model.fit( Xs=Xs, Ys=Ys, Yvars=Yvars, search_space_digest=search_space_digest, metric_names=metric_names, candidate_metadata=candidate_metadata, ) def _model_update( self, Xs: List[np.ndarray], Ys: List[np.ndarray], Yvars: List[np.ndarray], search_space_digest: SearchSpaceDigest, candidate_metadata: Optional[List[List[TCandidateMetadata]]], metric_names: List[str], ) -> None: if not self.model: # pragma: no cover raise ValueError(FIT_MODEL_ERROR.format(action="_model_update")) # pyre-fixme[35]: Target cannot be annotated. Xs: List[Tensor] = self._array_list_to_tensors(Xs) # pyre-fixme[35]: Target cannot be annotated. Ys: List[Tensor] = self._array_list_to_tensors(Ys) # pyre-fixme[35]: Target cannot be annotated. Yvars: List[Tensor] = self._array_list_to_tensors(Yvars) # pyre-fixme[16]: `Optional` has no attribute `update`. self.model.update( Xs=Xs, Ys=Ys, Yvars=Yvars, search_space_digest=search_space_digest, metric_names=self.outcomes, candidate_metadata=candidate_metadata, ) def _model_predict(self, X: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: if not self.model: # pragma: no cover raise ValueError(FIT_MODEL_ERROR.format(action="_model_predict")) f, var = not_none(self.model).predict(X=self._array_to_tensor(X)) return f.detach().cpu().clone().numpy(), var.detach().cpu().clone().numpy() def _model_gen( self, n: int, bounds: List[Tuple[float, float]], objective_weights: np.ndarray, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]], linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]], fixed_features: Optional[Dict[int, float]], pending_observations: Optional[List[np.ndarray]], model_gen_options: Optional[TConfig], rounding_func: Callable[[np.ndarray], np.ndarray], target_fidelities: Optional[Dict[int, float]], objective_thresholds: Optional[np.ndarray] = None, ) -> Tuple[np.ndarray, np.ndarray, TGenMetadata, List[TCandidateMetadata]]: if not self.model: # pragma: no cover raise ValueError(FIT_MODEL_ERROR.format(action="_model_gen")) obj_w, oc_c, l_c, pend_obs, obj_t = validate_and_apply_final_transform( objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, pending_observations=pending_observations, objective_thresholds=objective_thresholds, final_transform=self._array_to_tensor, ) tensor_rounding_func = self._array_callable_to_tensor_callable(rounding_func) augmented_model_gen_options = { **self._default_model_gen_options, **(model_gen_options or {}), } # TODO(ehotaj): For some reason, we're getting models which do not support MOO # even when optimization_config has multiple objectives, so we can't use # self.is_moo_problem here. is_moo_problem = self.is_moo_problem and isinstance( self.model, (BoTorchModel, MultiObjectiveBotorchModel) ) extra_kwargs = {"objective_thresholds": obj_t} if is_moo_problem else {} X, w, gen_metadata, candidate_metadata = not_none(self.model).gen( n=n, bounds=bounds, objective_weights=obj_w, outcome_constraints=oc_c, linear_constraints=l_c, fixed_features=fixed_features, pending_observations=pend_obs, model_gen_options=augmented_model_gen_options, rounding_func=tensor_rounding_func, target_fidelities=target_fidelities, **extra_kwargs ) if is_moo_problem: # If objective_thresholds are supplied by the user, then the transformed # user-specified objective thresholds are in gen_metadata. Otherwise, # inferred objective thresholds are in gen_metadata. gen_metadata[ "objective_thresholds" ] = self._untransform_objective_thresholds( objective_thresholds=gen_metadata["objective_thresholds"], objective_weights=obj_w, bounds=bounds, fixed_features=fixed_features, ) return ( X.detach().cpu().clone().numpy(), w.detach().cpu().clone().numpy(), gen_metadata, candidate_metadata, ) def _get_extra_model_gen_kwargs( self, optimization_config: OptimizationConfig ) -> Dict[str, Any]: extra_kwargs_dict = {} if optimization_config.is_moo_problem: optimization_config = checked_cast( MultiObjectiveOptimizationConfig, optimization_config ) extra_kwargs_dict["objective_thresholds"] = extract_objective_thresholds( objective_thresholds=optimization_config.objective_thresholds, objective=optimization_config.objective, outcomes=self.outcomes, ) return extra_kwargs_dict def _model_best_point( self, bounds: List[Tuple[float, float]], objective_weights: np.ndarray, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]], linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]], fixed_features: Optional[Dict[int, float]], model_gen_options: Optional[TConfig], target_fidelities: Optional[Dict[int, float]], ) -> Optional[np.ndarray]: # pragma: no cover if not self.model: # pragma: no cover raise ValueError(FIT_MODEL_ERROR.format(action="_model_gen")) obj_w, oc_c, l_c, _, _ = validate_and_apply_final_transform( objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, pending_observations=None, final_transform=self._array_to_tensor, ) try: # pyre-fixme[16]: `Optional` has no attribute `best_point`. X = self.model.best_point( bounds=bounds, objective_weights=obj_w, outcome_constraints=oc_c, linear_constraints=l_c, fixed_features=fixed_features, model_gen_options=model_gen_options, target_fidelities=target_fidelities, ) return None if X is None else X.detach().cpu().clone().numpy() except NotImplementedError: return None def _model_cross_validate( self, Xs_train: List[np.ndarray], Ys_train: List[np.ndarray], Yvars_train: List[np.ndarray], X_test: np.ndarray, search_space_digest: SearchSpaceDigest, metric_names: List[str], ) -> Tuple[np.ndarray, np.ndarray]: if not self.model: # pragma: no cover raise ValueError(FIT_MODEL_ERROR.format(action="_model_cross_validate")) # pyre-fixme[35]: Target cannot be annotated. Xs_train: List[Tensor] = self._array_list_to_tensors(Xs_train) # pyre-fixme[35]: Target cannot be annotated. Ys_train: List[Tensor] = self._array_list_to_tensors(Ys_train) # pyre-fixme[35]: Target cannot be annotated. Yvars_train: List[Tensor] = self._array_list_to_tensors(Yvars_train) # pyre-fixme[35]: Target cannot be annotated. X_test: Tensor = self._array_to_tensor(X_test) # pyre-fixme[16]: `Optional` has no attribute `cross_validate`. f_test, cov_test = self.model.cross_validate( Xs_train=Xs_train, Ys_train=Ys_train, Yvars_train=Yvars_train, X_test=X_test, search_space_digest=search_space_digest, metric_names=metric_names, ) return ( f_test.detach().cpu().clone().numpy(), cov_test.detach().cpu().clone().numpy(), ) def _array_to_tensor(self, array: Union[np.ndarray, List[float]]) -> Tensor: return torch.as_tensor(array, dtype=self.dtype, device=self.device) def _array_list_to_tensors(self, arrays: List[np.ndarray]) -> List[Tensor]: return [self._array_to_tensor(x) for x in arrays] def _array_callable_to_tensor_callable( self, array_func: Callable[[np.ndarray], np.ndarray] ) -> Callable[[Tensor], Tensor]: tensor_func: Callable[[Tensor], Tensor] = lambda x: ( self._array_to_tensor(array_func(x.detach().cpu().clone().numpy())) ) return tensor_func def _transform_observation_features( self, observation_features: List[ObservationFeatures] ) -> Tensor: return self._array_to_tensor( super()._transform_observation_features(observation_features) ) def _transform_observation_data( self, observation_data: List[ObservationData] ) -> Tuple[Tensor, Tensor]: mean, cov = super()._transform_observation_data(observation_data) return self._array_to_tensor(mean), self._array_to_tensor(cov) def infer_objective_thresholds( self, search_space: Optional[SearchSpace] = None, optimization_config: Optional[OptimizationConfig] = None, fixed_features: Optional[ObservationFeatures] = None, ) -> List[ObjectiveThreshold]: """Infer objective thresholds. This method is only applicable for Multi-Objective optimization problems. This method uses the model-estimated Pareto frontier over the in-sample points to infer absolute (not relativized) objective thresholds. This uses a heuristic that sets the objective threshold to be a scaled nadir point, where the nadir point is scaled back based on the range of each objective across the current in-sample Pareto frontier. """ assert ( self.is_moo_problem ), "Objective thresholds are only supported for multi-objective optimization." search_space = (search_space or self._model_space).clone() base_gen_args = self._get_transformed_gen_args( search_space=search_space, optimization_config=optimization_config, fixed_features=fixed_features, ) # Get transformed args from ArrayModelbridge. array_model_gen_args = self._get_transformed_model_gen_args( search_space=base_gen_args.search_space, fixed_features=base_gen_args.fixed_features, pending_observations={}, optimization_config=base_gen_args.optimization_config, ) # Get transformed args from TorchModelbridge. obj_w, oc_c, l_c, pend_obs, _ = validate_and_apply_final_transform( objective_weights=array_model_gen_args.objective_weights, outcome_constraints=array_model_gen_args.outcome_constraints, pending_observations=None, linear_constraints=array_model_gen_args.linear_constraints, final_transform=self._array_to_tensor, ) # Infer objective thresholds. model = checked_cast(MultiObjectiveBotorchModel, self.model) obj_thresholds_arr = infer_objective_thresholds( model=not_none(model.model), objective_weights=obj_w, bounds=array_model_gen_args.search_space_digest.bounds, outcome_constraints=oc_c, linear_constraints=l_c, fixed_features=array_model_gen_args.fixed_features, Xs=model.Xs, ) return self._untransform_objective_thresholds( objective_thresholds=obj_thresholds_arr, objective_weights=obj_w, bounds=array_model_gen_args.search_space_digest.bounds, fixed_features=array_model_gen_args.fixed_features, ) def _untransform_objective_thresholds( self, objective_thresholds: Tensor, objective_weights: Tensor, bounds: List[Tuple[Union[int, float], Union[int, float]]], fixed_features: Optional[Dict[int, float]], ) -> List[ObjectiveThreshold]: thresholds_np = objective_thresholds.cpu().numpy() idxs = objective_weights.nonzero().view(-1).tolist() optimization_config = not_none(self._optimization_config) # Create transformed ObjectiveThresholds from numpy thresholds. thresholds = [] for idx in idxs: sign = torch.sign(objective_weights[idx]) thresholds.append( ObjectiveThreshold( metric=optimization_config.metrics[self.outcomes[idx]], bound=thresholds_np[idx], relative=False, op=ComparisonOp.LEQ if sign < 0 else ComparisonOp.GEQ, ) ) # Create dummy ObservationFeatures from the fixed features. fixed = fixed_features or {} observation_features = [ ObservationFeatures( parameters={ name: fixed.get(i, 0.0) for i, name in enumerate(self.parameters) } ) ] # Untransform ObjectiveThresholds along with the dummy ObservationFeatures. for t in reversed(self.transforms.values()): thresholds = t.untransform_objective_thresholds( objective_thresholds=thresholds, observation_features=observation_features, ) observation_features = t.untransform_observation_features( observation_features ) return thresholds