ax/storage/metric_registry.py (80 lines of code) (raw):

#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple, Optional, Any, Callable, Dict, Type from ax.core.map_metric import MapMetric from ax.core.metric import Metric from ax.metrics.branin import BraninMetric from ax.metrics.branin_map import BraninTimestampMapMetric from ax.metrics.chemistry import ChemistryMetric from ax.metrics.factorial import FactorialMetric from ax.metrics.hartmann6 import Hartmann6Metric from ax.metrics.noisy_function import NoisyFunctionMetric from ax.metrics.sklearn import SklearnMetric from ax.storage.json_store.encoders import metric_to_dict from ax.storage.json_store.registry import CORE_ENCODER_REGISTRY, CORE_DECODER_REGISTRY from ax.utils.common.logger import get_logger # TODO[T113829027] Remove in a few months logger = get_logger(__name__) WARNING_MSG = ( "There have been some recent changes to `register_metric`. Please see " "https://ax.dev/tutorials/gpei_hartmann_developer.html#9.-Save-to-JSON-or-SQL " "for the most up-to-date information on saving custom metrics." ) """ Mapping of Metric classes to ints. All metrics will be stored in the same table in the database. When saving, we look up the metric subclass in METRIC_REGISTRY, and store the corresponding type field in the database. """ CORE_METRIC_REGISTRY: Dict[Type[Metric], int] = { Metric: 0, FactorialMetric: 1, BraninMetric: 2, NoisyFunctionMetric: 3, Hartmann6Metric: 4, SklearnMetric: 5, ChemistryMetric: 7, MapMetric: 8, BraninTimestampMapMetric: 9, } def register_metric( metric_cls: Type[Metric], metric_registry: Optional[Dict[Type[Metric], int]] = None, encoder_registry: Dict[ Type, Callable[[Any], Dict[str, Any]] ] = CORE_ENCODER_REGISTRY, decoder_registry: Dict[str, Type] = CORE_DECODER_REGISTRY, val: Optional[int] = None, ) -> Tuple[ Dict[Type[Metric], int], Dict[Type, Callable[[Any], Dict[str, Any]]], Dict[str, Type], ]: """Add a custom metric class to the SQA and JSON registries. For the SQA registry, if no int is specified, use a hash of the class name. """ logger.warn(WARNING_MSG) metric_registry = metric_registry or {Metric: 0} registered_val = val or abs(hash(metric_cls.__name__)) % (10 ** 5) new_metric_registry = {metric_cls: registered_val, **metric_registry} new_encoder_registry = {metric_cls: metric_to_dict, **encoder_registry} new_decoder_registry = {metric_cls.__name__: metric_cls, **decoder_registry} return new_metric_registry, new_encoder_registry, new_decoder_registry def register_metrics( metric_clss: Dict[Type[Metric], Optional[int]], metric_registry: Optional[Dict[Type[Metric], int]] = None, encoder_registry: Dict[ Type, Callable[[Any], Dict[str, Any]] ] = CORE_ENCODER_REGISTRY, decoder_registry: Dict[str, Type] = CORE_DECODER_REGISTRY, ) -> Tuple[ Dict[Type[Metric], int], Dict[Type, Callable[[Any], Dict[str, Any]]], Dict[str, Type], ]: """Add custom metric classes to the SQA and JSON registries. For the SQA registry, if no int is specified, use a hash of the class name. """ logger.warn(WARNING_MSG) metric_registry = metric_registry or {Metric: 1} new_metric_registry = { **{ metric_cls: val if val else abs(hash(metric_cls.__name__)) % (10 ** 5) for metric_cls, val in metric_clss.items() }, **metric_registry, } new_encoder_registry = { **{metric_cls: metric_to_dict for metric_cls in metric_clss}, **encoder_registry, } new_decoder_registry = { **{metric_cls.__name__: metric_cls for metric_cls in metric_clss}, **decoder_registry, } return new_metric_registry, new_encoder_registry, new_decoder_registry