website/pages/tutorials/index.js (147 lines of code) (raw):

/** * Copyright (c) Meta Platforms, Inc. and affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. * * @format */ const React = require('react'); const CWD = process.cwd(); const CompLibrary = require(`${CWD}/node_modules/docusaurus/lib/core/CompLibrary.js`); const Container = CompLibrary.Container; const MarkdownBlock = CompLibrary.MarkdownBlock; const TutorialSidebar = require(`${CWD}/core/TutorialSidebar.js`); class TutorialHome extends React.Component { render() { return ( <div className="docMainWrapper wrapper"> <TutorialSidebar currentTutorialID={null} /> <Container className="mainContainer documentContainer postContainer"> <div className="post"> <header className="postHeader"> <h1 className="postHeaderTitle">Welcome to Ax Tutorials</h1> </header> <p> Here you can learn about the structure and applications of Ax from examples. </p> <p> <b>Our 3 API tutorials:</b>&nbsp; <a href="gpei_hartmann_loop.html">Loop</a>,&nbsp; <a href="gpei_hartmann_service.html">Service</a>, and&nbsp; <a href="gpei_hartmann_developer.html">Developer</a> &mdash; are a good place to start. Each tutorial showcases optimization on a constrained Hartmann6 problem, with the Loop API being the simplest to use and the Developer API being the most customizable. </p> <p> <b> Further, we explore the different components available in Ax in more detail. </b>{' '} The components explored below serve to set up an experiment, visualize its results, configure an optimization algorithm, run an entire experiment in a managed closed loop, and combine BoTorch components in Ax in a modular way. </p> <ul> <li> <a href="visualizations.html">Visualizations</a>&nbsp; illustrates the different plots available to view and understand your results. </li> </ul> <ul> <li> <a href="generation_strategy.html">GenerationStrategy</a>&nbsp; steps through setting up a way to specify the optimization algorithm (or multiple). A <code>GenerationStrategy</code> is an important component of Service API and the <code>Scheduler</code>. </li> </ul> <ul> <li> <a href="scheduler.html">Scheduler</a>&nbsp; demonstrates an example of a managed and configurable closed-loop optimization, conducted in an asyncronous fashion. <code>Scheduler</code> is a manager abstraction in Ax that deploys trials, polls them, and uses their results to produce more trials. </li> </ul> <ul> <li> <a href="modular_botax.html"> Modular <code>BoTorchModel</code> </a> &nbsp; walks though a new beta-feature &mdash; an improved interface between Ax and <a href="https://botorch.org/">BoTorch</a>{' '} &mdash; which allows for combining arbitrary BoTorch components like <code>AcquisitionFunction</code>, <code>Model</code>, <code>AcquisitionObjective</code> etc. into a single{' '} <code>Model</code> in Ax. </li> </ul> <p> <b>Our other Bayesian Optimization tutorials include:</b> </p> <ul> <li> <a href="tune_cnn.html"> Hyperparameter Optimization for PyTorch </a> &nbsp; provides an example of hyperparameter optimization with Ax and integration with an external ML library. </li> </ul> <ul> <li> <a href="raytune_pytorch_cnn.html"> Hyperparameter Optimization via Raytune </a> &nbsp; provides an example of parallelized hyperparameter optimization using Ax + Raytune. </li> </ul> <ul> <li> <a href="multi_task.html">Multi-Task Modeling</a> &nbsp; illustrates multi-task Bayesian Optimization on a constrained synthetic Hartmann6 problem. </li> </ul> <ul> <li> <a href="multiobjective_optimization.html"> Multi-Objective Optimization </a> &nbsp; demonstrates Multi-Objective Bayesian Optimization on a synthetic Branin-Currin test function. </li> </ul> {/* <ul> <li> <a href="benchmarking_suite_example.html">Benchmarking Suite</a> &nbsp; demonstrates how to use the Ax benchmarking suite to compare Bayesian Optimization algorithm performances and generate a comparative report with visualizations. </li> </ul> */} <p> For experiments done in a real-life setting, refer to our field experiments tutorials: </p> <ul> <li> <a href="factorial.html">Bandit Optimization</a> &nbsp; shows how Thompson Sampling can be used to intelligently reallocate resources to well-performing configurations in real-time. </li> </ul> <ul> <li> <a href="human_in_the_loop/human_in_the_loop.html"> Human-in-the-Loop Optimization </a> &nbsp; walks through manually influencing the course of optimization in real-time. </li> </ul> </div> </Container> </div> ); } } module.exports = TutorialHome;