compiler/hieFile/HieUtils.hs (396 lines of code) (raw):
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleInstances #-}
module HieUtils where
import GhcPrelude
import CoreMap
import DynFlags ( DynFlags )
import FastString ( FastString, mkFastString )
import IfaceType
import Name hiding (varName)
import Outputable ( renderWithStyle, ppr, defaultUserStyle )
import SrcLoc
import ToIface
import TyCon
import TyCoRep
import Type
import Var
import VarEnv
import HieTypes
import qualified Data.Map as M
import qualified Data.Set as S
import qualified Data.IntMap.Strict as IM
import qualified Data.Array as A
import Data.Data ( typeOf, typeRepTyCon, Data(toConstr) )
import Data.Maybe ( maybeToList )
import Data.Monoid
import Data.Traversable ( for )
import Control.Monad.Trans.State.Strict hiding (get)
generateReferencesMap
:: Foldable f
=> f (HieAST a)
-> M.Map Identifier [(Span, IdentifierDetails a)]
generateReferencesMap = foldr (\ast m -> M.unionWith (++) (go ast) m) M.empty
where
go ast = M.unionsWith (++) (this : map go (nodeChildren ast))
where
this = fmap (pure . (nodeSpan ast,)) $ nodeIdentifiers $ nodeInfo ast
renderHieType :: DynFlags -> HieTypeFix -> String
renderHieType df ht = renderWithStyle df (ppr $ hieTypeToIface ht) sty
where sty = defaultUserStyle df
resolveVisibility :: Type -> [Type] -> [(Bool,Type)]
resolveVisibility kind ty_args
= go (mkEmptyTCvSubst in_scope) kind ty_args
where
in_scope = mkInScopeSet (tyCoVarsOfTypes ty_args)
go _ _ [] = []
go env ty ts
| Just ty' <- coreView ty
= go env ty' ts
go env (ForAllTy (Bndr tv vis) res) (t:ts)
| isVisibleArgFlag vis = (True , t) : ts'
| otherwise = (False, t) : ts'
where
ts' = go (extendTvSubst env tv t) res ts
go env (FunTy { ft_res = res }) (t:ts) -- No type-class args in tycon apps
= (True,t) : (go env res ts)
go env (TyVarTy tv) ts
| Just ki <- lookupTyVar env tv = go env ki ts
go env kind (t:ts) = (True, t) : (go env kind ts) -- Ill-kinded
foldType :: (HieType a -> a) -> HieTypeFix -> a
foldType f (Roll t) = f $ fmap (foldType f) t
hieTypeToIface :: HieTypeFix -> IfaceType
hieTypeToIface = foldType go
where
go (HTyVarTy n) = IfaceTyVar $ occNameFS $ getOccName n
go (HAppTy a b) = IfaceAppTy a (hieToIfaceArgs b)
go (HLitTy l) = IfaceLitTy l
go (HForAllTy ((n,k),af) t) = let b = (occNameFS $ getOccName n, k)
in IfaceForAllTy (Bndr (IfaceTvBndr b) af) t
go (HFunTy a b) = IfaceFunTy VisArg a b
go (HQualTy pred b) = IfaceFunTy InvisArg pred b
go (HCastTy a) = a
go HCoercionTy = IfaceTyVar "<coercion type>"
go (HTyConApp a xs) = IfaceTyConApp a (hieToIfaceArgs xs)
-- This isn't fully faithful - we can't produce the 'Inferred' case
hieToIfaceArgs :: HieArgs IfaceType -> IfaceAppArgs
hieToIfaceArgs (HieArgs xs) = go' xs
where
go' [] = IA_Nil
go' ((True ,x):xs) = IA_Arg x Required $ go' xs
go' ((False,x):xs) = IA_Arg x Specified $ go' xs
data HieTypeState
= HTS
{ tyMap :: !(TypeMap TypeIndex)
, htyTable :: !(IM.IntMap HieTypeFlat)
, freshIndex :: !TypeIndex
}
initialHTS :: HieTypeState
initialHTS = HTS emptyTypeMap IM.empty 0
freshTypeIndex :: State HieTypeState TypeIndex
freshTypeIndex = do
index <- gets freshIndex
modify' $ \hts -> hts { freshIndex = index+1 }
return index
compressTypes
:: HieASTs Type
-> (HieASTs TypeIndex, A.Array TypeIndex HieTypeFlat)
compressTypes asts = (a, arr)
where
(a, (HTS _ m i)) = flip runState initialHTS $
for asts $ \typ -> do
i <- getTypeIndex typ
return i
arr = A.array (0,i-1) (IM.toList m)
recoverFullType :: TypeIndex -> A.Array TypeIndex HieTypeFlat -> HieTypeFix
recoverFullType i m = go i
where
go i = Roll $ fmap go (m A.! i)
getTypeIndex :: Type -> State HieTypeState TypeIndex
getTypeIndex t
| otherwise = do
tm <- gets tyMap
case lookupTypeMap tm t of
Just i -> return i
Nothing -> do
ht <- go t
extendHTS t ht
where
extendHTS t ht = do
i <- freshTypeIndex
modify' $ \(HTS tm tt fi) ->
HTS (extendTypeMap tm t i) (IM.insert i ht tt) fi
return i
go (TyVarTy v) = return $ HTyVarTy $ varName v
go ty@(AppTy _ _) = do
let (head,args) = splitAppTys ty
visArgs = HieArgs $ resolveVisibility (typeKind head) args
ai <- getTypeIndex head
argsi <- mapM getTypeIndex visArgs
return $ HAppTy ai argsi
go (TyConApp f xs) = do
let visArgs = HieArgs $ resolveVisibility (tyConKind f) xs
is <- mapM getTypeIndex visArgs
return $ HTyConApp (toIfaceTyCon f) is
go (ForAllTy (Bndr v a) t) = do
k <- getTypeIndex (varType v)
i <- getTypeIndex t
return $ HForAllTy ((varName v,k),a) i
go (FunTy { ft_af = af, ft_arg = a, ft_res = b }) = do
ai <- getTypeIndex a
bi <- getTypeIndex b
return $ case af of
InvisArg -> HQualTy ai bi
VisArg -> HFunTy ai bi
go (LitTy a) = return $ HLitTy $ toIfaceTyLit a
go (CastTy t _) = do
i <- getTypeIndex t
return $ HCastTy i
go (CoercionTy _) = return HCoercionTy
resolveTyVarScopes :: M.Map FastString (HieAST a) -> M.Map FastString (HieAST a)
resolveTyVarScopes asts = M.map go asts
where
go ast = resolveTyVarScopeLocal ast asts
resolveTyVarScopeLocal :: HieAST a -> M.Map FastString (HieAST a) -> HieAST a
resolveTyVarScopeLocal ast asts = go ast
where
resolveNameScope dets = dets{identInfo =
S.map resolveScope (identInfo dets)}
resolveScope (TyVarBind sc (UnresolvedScope names Nothing)) =
TyVarBind sc $ ResolvedScopes
[ LocalScope binding
| name <- names
, Just binding <- [getNameBinding name asts]
]
resolveScope (TyVarBind sc (UnresolvedScope names (Just sp))) =
TyVarBind sc $ ResolvedScopes
[ LocalScope binding
| name <- names
, Just binding <- [getNameBindingInClass name sp asts]
]
resolveScope scope = scope
go (Node info span children) = Node info' span $ map go children
where
info' = info { nodeIdentifiers = idents }
idents = M.map resolveNameScope $ nodeIdentifiers info
getNameBinding :: Name -> M.Map FastString (HieAST a) -> Maybe Span
getNameBinding n asts = do
(_,msp) <- getNameScopeAndBinding n asts
msp
getNameScope :: Name -> M.Map FastString (HieAST a) -> Maybe [Scope]
getNameScope n asts = do
(scopes,_) <- getNameScopeAndBinding n asts
return scopes
getNameBindingInClass
:: Name
-> Span
-> M.Map FastString (HieAST a)
-> Maybe Span
getNameBindingInClass n sp asts = do
ast <- M.lookup (srcSpanFile sp) asts
getFirst $ foldMap First $ do
child <- flattenAst ast
dets <- maybeToList
$ M.lookup (Right n) $ nodeIdentifiers $ nodeInfo child
let binding = foldMap (First . getBindSiteFromContext) (identInfo dets)
return (getFirst binding)
getNameScopeAndBinding
:: Name
-> M.Map FastString (HieAST a)
-> Maybe ([Scope], Maybe Span)
getNameScopeAndBinding n asts = case nameSrcSpan n of
RealSrcSpan sp -> do -- @Maybe
ast <- M.lookup (srcSpanFile sp) asts
defNode <- selectLargestContainedBy sp ast
getFirst $ foldMap First $ do -- @[]
node <- flattenAst defNode
dets <- maybeToList
$ M.lookup (Right n) $ nodeIdentifiers $ nodeInfo node
scopes <- maybeToList $ foldMap getScopeFromContext (identInfo dets)
let binding = foldMap (First . getBindSiteFromContext) (identInfo dets)
return $ Just (scopes, getFirst binding)
_ -> Nothing
getScopeFromContext :: ContextInfo -> Maybe [Scope]
getScopeFromContext (ValBind _ sc _) = Just [sc]
getScopeFromContext (PatternBind a b _) = Just [a, b]
getScopeFromContext (ClassTyDecl _) = Just [ModuleScope]
getScopeFromContext (Decl _ _) = Just [ModuleScope]
getScopeFromContext (TyVarBind a (ResolvedScopes xs)) = Just $ a:xs
getScopeFromContext (TyVarBind a _) = Just [a]
getScopeFromContext _ = Nothing
getBindSiteFromContext :: ContextInfo -> Maybe Span
getBindSiteFromContext (ValBind _ _ sp) = sp
getBindSiteFromContext (PatternBind _ _ sp) = sp
getBindSiteFromContext _ = Nothing
flattenAst :: HieAST a -> [HieAST a]
flattenAst n =
n : concatMap flattenAst (nodeChildren n)
smallestContainingSatisfying
:: Span
-> (HieAST a -> Bool)
-> HieAST a
-> Maybe (HieAST a)
smallestContainingSatisfying sp cond node
| nodeSpan node `containsSpan` sp = getFirst $ mconcat
[ foldMap (First . smallestContainingSatisfying sp cond) $
nodeChildren node
, First $ if cond node then Just node else Nothing
]
| sp `containsSpan` nodeSpan node = Nothing
| otherwise = Nothing
selectLargestContainedBy :: Span -> HieAST a -> Maybe (HieAST a)
selectLargestContainedBy sp node
| sp `containsSpan` nodeSpan node = Just node
| nodeSpan node `containsSpan` sp =
getFirst $ foldMap (First . selectLargestContainedBy sp) $
nodeChildren node
| otherwise = Nothing
selectSmallestContaining :: Span -> HieAST a -> Maybe (HieAST a)
selectSmallestContaining sp node
| nodeSpan node `containsSpan` sp = getFirst $ mconcat
[ foldMap (First . selectSmallestContaining sp) $ nodeChildren node
, First (Just node)
]
| sp `containsSpan` nodeSpan node = Nothing
| otherwise = Nothing
definedInAsts :: M.Map FastString (HieAST a) -> Name -> Bool
definedInAsts asts n = case nameSrcSpan n of
RealSrcSpan sp -> srcSpanFile sp `elem` M.keys asts
_ -> False
isOccurrence :: ContextInfo -> Bool
isOccurrence Use = True
isOccurrence _ = False
scopeContainsSpan :: Scope -> Span -> Bool
scopeContainsSpan NoScope _ = False
scopeContainsSpan ModuleScope _ = True
scopeContainsSpan (LocalScope a) b = a `containsSpan` b
-- | One must contain the other. Leaf nodes cannot contain anything
combineAst :: HieAST Type -> HieAST Type -> HieAST Type
combineAst a@(Node aInf aSpn xs) b@(Node bInf bSpn ys)
| aSpn == bSpn = Node (aInf `combineNodeInfo` bInf) aSpn (mergeAsts xs ys)
| aSpn `containsSpan` bSpn = combineAst b a
combineAst a (Node xs span children) = Node xs span (insertAst a children)
-- | Insert an AST in a sorted list of disjoint Asts
insertAst :: HieAST Type -> [HieAST Type] -> [HieAST Type]
insertAst x = mergeAsts [x]
-- | Merge two nodes together.
--
-- Precondition and postcondition: elements in 'nodeType' are ordered.
combineNodeInfo :: NodeInfo Type -> NodeInfo Type -> NodeInfo Type
(NodeInfo as ai ad) `combineNodeInfo` (NodeInfo bs bi bd) =
NodeInfo (S.union as bs) (mergeSorted ai bi) (M.unionWith (<>) ad bd)
where
mergeSorted :: [Type] -> [Type] -> [Type]
mergeSorted la@(a:as) lb@(b:bs) = case nonDetCmpType a b of
LT -> a : mergeSorted as lb
EQ -> a : mergeSorted as bs
GT -> b : mergeSorted la bs
mergeSorted as [] = as
mergeSorted [] bs = bs
{- | Merge two sorted, disjoint lists of ASTs, combining when necessary.
In the absence of position-altering pragmas (ex: @# line "file.hs" 3@),
different nodes in an AST tree should either have disjoint spans (in
which case you can say for sure which one comes first) or one span
should be completely contained in the other (in which case the contained
span corresponds to some child node).
However, since Haskell does have position-altering pragmas it /is/
possible for spans to be overlapping. Here is an example of a source file
in which @foozball@ and @quuuuuux@ have overlapping spans:
@
module Baz where
# line 3 "Baz.hs"
foozball :: Int
foozball = 0
# line 3 "Baz.hs"
bar, quuuuuux :: Int
bar = 1
quuuuuux = 2
@
In these cases, we just do our best to produce sensible `HieAST`'s. The blame
should be laid at the feet of whoever wrote the line pragmas in the first place
(usually the C preprocessor...).
-}
mergeAsts :: [HieAST Type] -> [HieAST Type] -> [HieAST Type]
mergeAsts xs [] = xs
mergeAsts [] ys = ys
mergeAsts xs@(a:as) ys@(b:bs)
| span_a `containsSpan` span_b = mergeAsts (combineAst a b : as) bs
| span_b `containsSpan` span_a = mergeAsts as (combineAst a b : bs)
| span_a `rightOf` span_b = b : mergeAsts xs bs
| span_a `leftOf` span_b = a : mergeAsts as ys
-- These cases are to work around ASTs that are not fully disjoint
| span_a `startsRightOf` span_b = b : mergeAsts as ys
| otherwise = a : mergeAsts as ys
where
span_a = nodeSpan a
span_b = nodeSpan b
rightOf :: Span -> Span -> Bool
rightOf s1 s2
= (srcSpanStartLine s1, srcSpanStartCol s1)
>= (srcSpanEndLine s2, srcSpanEndCol s2)
&& (srcSpanFile s1 == srcSpanFile s2)
leftOf :: Span -> Span -> Bool
leftOf s1 s2
= (srcSpanEndLine s1, srcSpanEndCol s1)
<= (srcSpanStartLine s2, srcSpanStartCol s2)
&& (srcSpanFile s1 == srcSpanFile s2)
startsRightOf :: Span -> Span -> Bool
startsRightOf s1 s2
= (srcSpanStartLine s1, srcSpanStartCol s1)
>= (srcSpanStartLine s2, srcSpanStartCol s2)
-- | combines and sorts ASTs using a merge sort
mergeSortAsts :: [HieAST Type] -> [HieAST Type]
mergeSortAsts = go . map pure
where
go [] = []
go [xs] = xs
go xss = go (mergePairs xss)
mergePairs [] = []
mergePairs [xs] = [xs]
mergePairs (xs:ys:xss) = mergeAsts xs ys : mergePairs xss
simpleNodeInfo :: FastString -> FastString -> NodeInfo a
simpleNodeInfo cons typ = NodeInfo (S.singleton (cons, typ)) [] M.empty
locOnly :: SrcSpan -> [HieAST a]
locOnly (RealSrcSpan span) =
[Node e span []]
where e = NodeInfo S.empty [] M.empty
locOnly _ = []
mkScope :: SrcSpan -> Scope
mkScope (RealSrcSpan sp) = LocalScope sp
mkScope _ = NoScope
mkLScope :: Located a -> Scope
mkLScope = mkScope . getLoc
combineScopes :: Scope -> Scope -> Scope
combineScopes ModuleScope _ = ModuleScope
combineScopes _ ModuleScope = ModuleScope
combineScopes NoScope x = x
combineScopes x NoScope = x
combineScopes (LocalScope a) (LocalScope b) =
mkScope $ combineSrcSpans (RealSrcSpan a) (RealSrcSpan b)
{-# INLINEABLE makeNode #-}
makeNode
:: (Applicative m, Data a)
=> a -- ^ helps fill in 'nodeAnnotations' (with 'Data')
-> SrcSpan -- ^ return an empty list if this is unhelpful
-> m [HieAST b]
makeNode x spn = pure $ case spn of
RealSrcSpan span -> [Node (simpleNodeInfo cons typ) span []]
_ -> []
where
cons = mkFastString . show . toConstr $ x
typ = mkFastString . show . typeRepTyCon . typeOf $ x
{-# INLINEABLE makeTypeNode #-}
makeTypeNode
:: (Applicative m, Data a)
=> a -- ^ helps fill in 'nodeAnnotations' (with 'Data')
-> SrcSpan -- ^ return an empty list if this is unhelpful
-> Type -- ^ type to associate with the node
-> m [HieAST Type]
makeTypeNode x spn etyp = pure $ case spn of
RealSrcSpan span ->
[Node (NodeInfo (S.singleton (cons,typ)) [etyp] M.empty) span []]
_ -> []
where
cons = mkFastString . show . toConstr $ x
typ = mkFastString . show . typeRepTyCon . typeOf $ x