compiler/nativeGen/X86/CodeGen.hs (3,053 lines of code) (raw):
{-# LANGUAGE CPP, GADTs, NondecreasingIndentation #-}
-- The default iteration limit is a bit too low for the definitions
-- in this module.
{-# OPTIONS_GHC -fmax-pmcheck-iterations=10000000 #-}
-----------------------------------------------------------------------------
--
-- Generating machine code (instruction selection)
--
-- (c) The University of Glasgow 1996-2004
--
-----------------------------------------------------------------------------
-- This is a big module, but, if you pay attention to
-- (a) the sectioning, and (b) the type signatures, the
-- structure should not be too overwhelming.
module X86.CodeGen (
cmmTopCodeGen,
generateJumpTableForInstr,
extractUnwindPoints,
invertCondBranches,
InstrBlock
)
where
#include "HsVersions.h"
#include "nativeGen/NCG.h"
#include "../includes/MachDeps.h"
-- NCG stuff:
import GhcPrelude
import X86.Instr
import X86.Cond
import X86.Regs
import X86.RegInfo
--TODO: Remove - Just for development/debugging
import X86.Ppr()
import CodeGen.Platform
import CPrim
import Debug ( DebugBlock(..), UnwindPoint(..), UnwindTable
, UnwindExpr(UwReg), toUnwindExpr )
import Instruction
import PIC
import NCGMonad ( NatM, getNewRegNat, getNewLabelNat, setDeltaNat
, getDeltaNat, getBlockIdNat, getPicBaseNat, getNewRegPairNat
, getPicBaseMaybeNat, getDebugBlock, getFileId
, addImmediateSuccessorNat, updateCfgNat)
import CFG
import Format
import Reg
import Platform
-- Our intermediate code:
import BasicTypes
import BlockId
import Module ( primUnitId )
import PprCmm ()
import CmmUtils
import CmmSwitch
import Cmm
import Hoopl.Block
import Hoopl.Collections
import Hoopl.Graph
import Hoopl.Label
import CLabel
import CoreSyn ( Tickish(..) )
import SrcLoc ( srcSpanFile, srcSpanStartLine, srcSpanStartCol )
-- The rest:
import ForeignCall ( CCallConv(..) )
import OrdList
import Outputable
import FastString
import DynFlags
import Util
import UniqSupply ( getUniqueM )
import Control.Monad
import Data.Bits
import Data.Foldable (fold)
import Data.Int
import Data.Maybe
import Data.Word
import qualified Data.Map as M
is32BitPlatform :: NatM Bool
is32BitPlatform = do
dflags <- getDynFlags
return $ target32Bit (targetPlatform dflags)
sse2Enabled :: NatM Bool
sse2Enabled = do
dflags <- getDynFlags
return (isSse2Enabled dflags)
sse4_2Enabled :: NatM Bool
sse4_2Enabled = do
dflags <- getDynFlags
return (isSse4_2Enabled dflags)
if_sse2 :: NatM a -> NatM a -> NatM a
if_sse2 sse2 x87 = do
b <- sse2Enabled
if b then sse2 else x87
cmmTopCodeGen
:: RawCmmDecl
-> NatM [NatCmmDecl (Alignment, CmmStatics) Instr]
cmmTopCodeGen (CmmProc info lab live graph) = do
let blocks = toBlockListEntryFirst graph
(nat_blocks,statics) <- mapAndUnzipM basicBlockCodeGen blocks
picBaseMb <- getPicBaseMaybeNat
dflags <- getDynFlags
let proc = CmmProc info lab live (ListGraph $ concat nat_blocks)
tops = proc : concat statics
os = platformOS $ targetPlatform dflags
case picBaseMb of
Just picBase -> initializePicBase_x86 ArchX86 os picBase tops
Nothing -> return tops
cmmTopCodeGen (CmmData sec dat) = do
return [CmmData sec (1, dat)] -- no translation, we just use CmmStatic
basicBlockCodeGen
:: CmmBlock
-> NatM ( [NatBasicBlock Instr]
, [NatCmmDecl (Alignment, CmmStatics) Instr])
basicBlockCodeGen block = do
let (_, nodes, tail) = blockSplit block
id = entryLabel block
stmts = blockToList nodes
-- Generate location directive
dbg <- getDebugBlock (entryLabel block)
loc_instrs <- case dblSourceTick =<< dbg of
Just (SourceNote span name)
-> do fileId <- getFileId (srcSpanFile span)
let line = srcSpanStartLine span; col = srcSpanStartCol span
return $ unitOL $ LOCATION fileId line col name
_ -> return nilOL
mid_instrs <- stmtsToInstrs id stmts
tail_instrs <- stmtToInstrs id tail
let instrs = loc_instrs `appOL` mid_instrs `appOL` tail_instrs
instrs' <- fold <$> traverse addSpUnwindings instrs
-- code generation may introduce new basic block boundaries, which
-- are indicated by the NEWBLOCK instruction. We must split up the
-- instruction stream into basic blocks again. Also, we extract
-- LDATAs here too.
let
(top,other_blocks,statics) = foldrOL mkBlocks ([],[],[]) instrs'
mkBlocks (NEWBLOCK id) (instrs,blocks,statics)
= ([], BasicBlock id instrs : blocks, statics)
mkBlocks (LDATA sec dat) (instrs,blocks,statics)
= (instrs, blocks, CmmData sec dat:statics)
mkBlocks instr (instrs,blocks,statics)
= (instr:instrs, blocks, statics)
return (BasicBlock id top : other_blocks, statics)
-- | Convert 'DELTA' instructions into 'UNWIND' instructions to capture changes
-- in the @sp@ register. See Note [What is this unwinding business?] in Debug
-- for details.
addSpUnwindings :: Instr -> NatM (OrdList Instr)
addSpUnwindings instr@(DELTA d) = do
dflags <- getDynFlags
if debugLevel dflags >= 1
then do lbl <- mkAsmTempLabel <$> getUniqueM
let unwind = M.singleton MachSp (Just $ UwReg MachSp $ negate d)
return $ toOL [ instr, UNWIND lbl unwind ]
else return (unitOL instr)
addSpUnwindings instr = return $ unitOL instr
stmtsToInstrs :: BlockId -> [CmmNode e x] -> NatM InstrBlock
stmtsToInstrs bid stmts
= do instrss <- mapM (stmtToInstrs bid) stmts
return (concatOL instrss)
-- | `bid` refers to the current block and is used to update the CFG
-- if new blocks are inserted in the control flow.
stmtToInstrs :: BlockId -> CmmNode e x -> NatM InstrBlock
stmtToInstrs bid stmt = do
dflags <- getDynFlags
is32Bit <- is32BitPlatform
case stmt of
CmmComment s -> return (unitOL (COMMENT s))
CmmTick {} -> return nilOL
CmmUnwind regs -> do
let to_unwind_entry :: (GlobalReg, Maybe CmmExpr) -> UnwindTable
to_unwind_entry (reg, expr) = M.singleton reg (fmap toUnwindExpr expr)
case foldMap to_unwind_entry regs of
tbl | M.null tbl -> return nilOL
| otherwise -> do
lbl <- mkAsmTempLabel <$> getUniqueM
return $ unitOL $ UNWIND lbl tbl
CmmAssign reg src
| isFloatType ty -> assignReg_FltCode format reg src
| is32Bit && isWord64 ty -> assignReg_I64Code reg src
| otherwise -> assignReg_IntCode format reg src
where ty = cmmRegType dflags reg
format = cmmTypeFormat ty
CmmStore addr src
| isFloatType ty -> assignMem_FltCode format addr src
| is32Bit && isWord64 ty -> assignMem_I64Code addr src
| otherwise -> assignMem_IntCode format addr src
where ty = cmmExprType dflags src
format = cmmTypeFormat ty
CmmUnsafeForeignCall target result_regs args
-> genCCall dflags is32Bit target result_regs args bid
CmmBranch id -> return $ genBranch id
--We try to arrange blocks such that the likely branch is the fallthrough
--in CmmContFlowOpt. So we can assume the condition is likely false here.
CmmCondBranch arg true false _ -> genCondBranch bid true false arg
CmmSwitch arg ids -> do dflags <- getDynFlags
genSwitch dflags arg ids
CmmCall { cml_target = arg
, cml_args_regs = gregs } -> do
dflags <- getDynFlags
genJump arg (jumpRegs dflags gregs)
_ ->
panic "stmtToInstrs: statement should have been cps'd away"
jumpRegs :: DynFlags -> [GlobalReg] -> [Reg]
jumpRegs dflags gregs = [ RegReal r | Just r <- map (globalRegMaybe platform) gregs ]
where platform = targetPlatform dflags
--------------------------------------------------------------------------------
-- | 'InstrBlock's are the insn sequences generated by the insn selectors.
-- They are really trees of insns to facilitate fast appending, where a
-- left-to-right traversal yields the insns in the correct order.
--
type InstrBlock
= OrdList Instr
-- | Condition codes passed up the tree.
--
data CondCode
= CondCode Bool Cond InstrBlock
-- | a.k.a "Register64"
-- Reg is the lower 32-bit temporary which contains the result.
-- Use getHiVRegFromLo to find the other VRegUnique.
--
-- Rules of this simplified insn selection game are therefore that
-- the returned Reg may be modified
--
data ChildCode64
= ChildCode64
InstrBlock
Reg
-- | Register's passed up the tree. If the stix code forces the register
-- to live in a pre-decided machine register, it comes out as @Fixed@;
-- otherwise, it comes out as @Any@, and the parent can decide which
-- register to put it in.
--
data Register
= Fixed Format Reg InstrBlock
| Any Format (Reg -> InstrBlock)
swizzleRegisterRep :: Register -> Format -> Register
swizzleRegisterRep (Fixed _ reg code) format = Fixed format reg code
swizzleRegisterRep (Any _ codefn) format = Any format codefn
-- | Grab the Reg for a CmmReg
getRegisterReg :: Platform -> Bool -> CmmReg -> Reg
getRegisterReg _ use_sse2 (CmmLocal (LocalReg u pk))
= let fmt = cmmTypeFormat pk in
if isFloatFormat fmt && not use_sse2
then RegVirtual (mkVirtualReg u FF80)
else RegVirtual (mkVirtualReg u fmt)
getRegisterReg platform _ (CmmGlobal mid)
= case globalRegMaybe platform mid of
Just reg -> RegReal $ reg
Nothing -> pprPanic "getRegisterReg-memory" (ppr $ CmmGlobal mid)
-- By this stage, the only MagicIds remaining should be the
-- ones which map to a real machine register on this
-- platform. Hence ...
-- | Memory addressing modes passed up the tree.
data Amode
= Amode AddrMode InstrBlock
{-
Now, given a tree (the argument to a CmmLoad) that references memory,
produce a suitable addressing mode.
A Rule of the Game (tm) for Amodes: use of the addr bit must
immediately follow use of the code part, since the code part puts
values in registers which the addr then refers to. So you can't put
anything in between, lest it overwrite some of those registers. If
you need to do some other computation between the code part and use of
the addr bit, first store the effective address from the amode in a
temporary, then do the other computation, and then use the temporary:
code
LEA amode, tmp
... other computation ...
... (tmp) ...
-}
-- | Check whether an integer will fit in 32 bits.
-- A CmmInt is intended to be truncated to the appropriate
-- number of bits, so here we truncate it to Int64. This is
-- important because e.g. -1 as a CmmInt might be either
-- -1 or 18446744073709551615.
--
is32BitInteger :: Integer -> Bool
is32BitInteger i = i64 <= 0x7fffffff && i64 >= -0x80000000
where i64 = fromIntegral i :: Int64
-- | Convert a BlockId to some CmmStatic data
jumpTableEntry :: DynFlags -> Maybe BlockId -> CmmStatic
jumpTableEntry dflags Nothing = CmmStaticLit (CmmInt 0 (wordWidth dflags))
jumpTableEntry _ (Just blockid) = CmmStaticLit (CmmLabel blockLabel)
where blockLabel = blockLbl blockid
-- -----------------------------------------------------------------------------
-- General things for putting together code sequences
-- Expand CmmRegOff. ToDo: should we do it this way around, or convert
-- CmmExprs into CmmRegOff?
mangleIndexTree :: DynFlags -> CmmReg -> Int -> CmmExpr
mangleIndexTree dflags reg off
= CmmMachOp (MO_Add width) [CmmReg reg, CmmLit (CmmInt (fromIntegral off) width)]
where width = typeWidth (cmmRegType dflags reg)
-- | The dual to getAnyReg: compute an expression into a register, but
-- we don't mind which one it is.
getSomeReg :: CmmExpr -> NatM (Reg, InstrBlock)
getSomeReg expr = do
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed _ reg code ->
return (reg, code)
assignMem_I64Code :: CmmExpr -> CmmExpr -> NatM InstrBlock
assignMem_I64Code addrTree valueTree = do
Amode addr addr_code <- getAmode addrTree
ChildCode64 vcode rlo <- iselExpr64 valueTree
let
rhi = getHiVRegFromLo rlo
-- Little-endian store
mov_lo = MOV II32 (OpReg rlo) (OpAddr addr)
mov_hi = MOV II32 (OpReg rhi) (OpAddr (fromJust (addrOffset addr 4)))
return (vcode `appOL` addr_code `snocOL` mov_lo `snocOL` mov_hi)
assignReg_I64Code :: CmmReg -> CmmExpr -> NatM InstrBlock
assignReg_I64Code (CmmLocal (LocalReg u_dst _)) valueTree = do
ChildCode64 vcode r_src_lo <- iselExpr64 valueTree
let
r_dst_lo = RegVirtual $ mkVirtualReg u_dst II32
r_dst_hi = getHiVRegFromLo r_dst_lo
r_src_hi = getHiVRegFromLo r_src_lo
mov_lo = MOV II32 (OpReg r_src_lo) (OpReg r_dst_lo)
mov_hi = MOV II32 (OpReg r_src_hi) (OpReg r_dst_hi)
return (
vcode `snocOL` mov_lo `snocOL` mov_hi
)
assignReg_I64Code _ _
= panic "assignReg_I64Code(i386): invalid lvalue"
iselExpr64 :: CmmExpr -> NatM ChildCode64
iselExpr64 (CmmLit (CmmInt i _)) = do
(rlo,rhi) <- getNewRegPairNat II32
let
r = fromIntegral (fromIntegral i :: Word32)
q = fromIntegral (fromIntegral (i `shiftR` 32) :: Word32)
code = toOL [
MOV II32 (OpImm (ImmInteger r)) (OpReg rlo),
MOV II32 (OpImm (ImmInteger q)) (OpReg rhi)
]
return (ChildCode64 code rlo)
iselExpr64 (CmmLoad addrTree ty) | isWord64 ty = do
Amode addr addr_code <- getAmode addrTree
(rlo,rhi) <- getNewRegPairNat II32
let
mov_lo = MOV II32 (OpAddr addr) (OpReg rlo)
mov_hi = MOV II32 (OpAddr (fromJust (addrOffset addr 4))) (OpReg rhi)
return (
ChildCode64 (addr_code `snocOL` mov_lo `snocOL` mov_hi)
rlo
)
iselExpr64 (CmmReg (CmmLocal (LocalReg vu ty))) | isWord64 ty
= return (ChildCode64 nilOL (RegVirtual $ mkVirtualReg vu II32))
-- we handle addition, but rather badly
iselExpr64 (CmmMachOp (MO_Add _) [e1, CmmLit (CmmInt i _)]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
(rlo,rhi) <- getNewRegPairNat II32
let
r = fromIntegral (fromIntegral i :: Word32)
q = fromIntegral (fromIntegral (i `shiftR` 32) :: Word32)
r1hi = getHiVRegFromLo r1lo
code = code1 `appOL`
toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
ADD II32 (OpImm (ImmInteger r)) (OpReg rlo),
MOV II32 (OpReg r1hi) (OpReg rhi),
ADC II32 (OpImm (ImmInteger q)) (OpReg rhi) ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Add _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat II32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
ADD II32 (OpReg r2lo) (OpReg rlo),
MOV II32 (OpReg r1hi) (OpReg rhi),
ADC II32 (OpReg r2hi) (OpReg rhi) ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_Sub _) [e1,e2]) = do
ChildCode64 code1 r1lo <- iselExpr64 e1
ChildCode64 code2 r2lo <- iselExpr64 e2
(rlo,rhi) <- getNewRegPairNat II32
let
r1hi = getHiVRegFromLo r1lo
r2hi = getHiVRegFromLo r2lo
code = code1 `appOL`
code2 `appOL`
toOL [ MOV II32 (OpReg r1lo) (OpReg rlo),
SUB II32 (OpReg r2lo) (OpReg rlo),
MOV II32 (OpReg r1hi) (OpReg rhi),
SBB II32 (OpReg r2hi) (OpReg rhi) ]
return (ChildCode64 code rlo)
iselExpr64 (CmmMachOp (MO_UU_Conv _ W64) [expr]) = do
fn <- getAnyReg expr
r_dst_lo <- getNewRegNat II32
let r_dst_hi = getHiVRegFromLo r_dst_lo
code = fn r_dst_lo
return (
ChildCode64 (code `snocOL`
MOV II32 (OpImm (ImmInt 0)) (OpReg r_dst_hi))
r_dst_lo
)
iselExpr64 (CmmMachOp (MO_SS_Conv W32 W64) [expr]) = do
fn <- getAnyReg expr
r_dst_lo <- getNewRegNat II32
let r_dst_hi = getHiVRegFromLo r_dst_lo
code = fn r_dst_lo
return (
ChildCode64 (code `snocOL`
MOV II32 (OpReg r_dst_lo) (OpReg eax) `snocOL`
CLTD II32 `snocOL`
MOV II32 (OpReg eax) (OpReg r_dst_lo) `snocOL`
MOV II32 (OpReg edx) (OpReg r_dst_hi))
r_dst_lo
)
iselExpr64 expr
= pprPanic "iselExpr64(i386)" (ppr expr)
--------------------------------------------------------------------------------
getRegister :: CmmExpr -> NatM Register
getRegister e = do dflags <- getDynFlags
is32Bit <- is32BitPlatform
getRegister' dflags is32Bit e
getRegister' :: DynFlags -> Bool -> CmmExpr -> NatM Register
getRegister' dflags is32Bit (CmmReg reg)
= case reg of
CmmGlobal PicBaseReg
| is32Bit ->
-- on x86_64, we have %rip for PicBaseReg, but it's not
-- a full-featured register, it can only be used for
-- rip-relative addressing.
do reg' <- getPicBaseNat (archWordFormat is32Bit)
return (Fixed (archWordFormat is32Bit) reg' nilOL)
_ ->
do use_sse2 <- sse2Enabled
let
fmt = cmmTypeFormat (cmmRegType dflags reg)
format | not use_sse2 && isFloatFormat fmt = FF80
| otherwise = fmt
--
let platform = targetPlatform dflags
return (Fixed format
(getRegisterReg platform use_sse2 reg)
nilOL)
getRegister' dflags is32Bit (CmmRegOff r n)
= getRegister' dflags is32Bit $ mangleIndexTree dflags r n
getRegister' dflags is32Bit (CmmMachOp (MO_AlignmentCheck align _) [e])
= addAlignmentCheck align <$> getRegister' dflags is32Bit e
-- for 32-bit architectuers, support some 64 -> 32 bit conversions:
-- TO_W_(x), TO_W_(x >> 32)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W64 W32)
[CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 (getHiVRegFromLo rlo) code
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W64 W32)
[CmmMachOp (MO_U_Shr W64) [x,CmmLit (CmmInt 32 _)]])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 (getHiVRegFromLo rlo) code
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W64 W32) [x])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 rlo code
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W64 W32) [x])
| is32Bit = do
ChildCode64 code rlo <- iselExpr64 x
return $ Fixed II32 rlo code
getRegister' _ _ (CmmLit lit@(CmmFloat f w)) =
if_sse2 float_const_sse2 float_const_x87
where
float_const_sse2
| f == 0.0 = do
let
format = floatFormat w
code dst = unitOL (XOR format (OpReg dst) (OpReg dst))
-- I don't know why there are xorpd, xorps, and pxor instructions.
-- They all appear to do the same thing --SDM
return (Any format code)
| otherwise = do
Amode addr code <- memConstant (widthInBytes w) lit
loadFloatAmode True w addr code
float_const_x87 = case w of
W64
| f == 0.0 ->
let code dst = unitOL (GLDZ dst)
in return (Any FF80 code)
| f == 1.0 ->
let code dst = unitOL (GLD1 dst)
in return (Any FF80 code)
_otherwise -> do
Amode addr code <- memConstant (widthInBytes w) lit
loadFloatAmode False w addr code
-- catch simple cases of zero- or sign-extended load
getRegister' _ _ (CmmMachOp (MO_UU_Conv W8 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL II8) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_SS_Conv W8 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL II8) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_UU_Conv W16 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVZxL II16) addr
return (Any II32 code)
getRegister' _ _ (CmmMachOp (MO_SS_Conv W16 W32) [CmmLoad addr _]) = do
code <- intLoadCode (MOVSxL II16) addr
return (Any II32 code)
-- catch simple cases of zero- or sign-extended load
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W8 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVZxL II8) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W8 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II8) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W16 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVZxL II16) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W16 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II16) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_UU_Conv W32 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOV II32) addr -- 32-bit loads zero-extend
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_SS_Conv W32 W64) [CmmLoad addr _])
| not is32Bit = do
code <- intLoadCode (MOVSxL II32) addr
return (Any II64 code)
getRegister' _ is32Bit (CmmMachOp (MO_Add W64) [CmmReg (CmmGlobal PicBaseReg),
CmmLit displacement])
| not is32Bit = do
return $ Any II64 (\dst -> unitOL $
LEA II64 (OpAddr (ripRel (litToImm displacement))) (OpReg dst))
getRegister' dflags is32Bit (CmmMachOp mop [x]) = do -- unary MachOps
sse2 <- sse2Enabled
case mop of
MO_F_Neg w
| sse2 -> sse2NegCode w x
| otherwise -> trivialUFCode FF80 (GNEG FF80) x
MO_S_Neg w -> triv_ucode NEGI (intFormat w)
MO_Not w -> triv_ucode NOT (intFormat w)
-- Nop conversions
MO_UU_Conv W32 W8 -> toI8Reg W32 x
MO_SS_Conv W32 W8 -> toI8Reg W32 x
MO_XX_Conv W32 W8 -> toI8Reg W32 x
MO_UU_Conv W16 W8 -> toI8Reg W16 x
MO_SS_Conv W16 W8 -> toI8Reg W16 x
MO_XX_Conv W16 W8 -> toI8Reg W16 x
MO_UU_Conv W32 W16 -> toI16Reg W32 x
MO_SS_Conv W32 W16 -> toI16Reg W32 x
MO_XX_Conv W32 W16 -> toI16Reg W32 x
MO_UU_Conv W64 W32 | not is32Bit -> conversionNop II64 x
MO_SS_Conv W64 W32 | not is32Bit -> conversionNop II64 x
MO_XX_Conv W64 W32 | not is32Bit -> conversionNop II64 x
MO_UU_Conv W64 W16 | not is32Bit -> toI16Reg W64 x
MO_SS_Conv W64 W16 | not is32Bit -> toI16Reg W64 x
MO_XX_Conv W64 W16 | not is32Bit -> toI16Reg W64 x
MO_UU_Conv W64 W8 | not is32Bit -> toI8Reg W64 x
MO_SS_Conv W64 W8 | not is32Bit -> toI8Reg W64 x
MO_XX_Conv W64 W8 | not is32Bit -> toI8Reg W64 x
MO_UU_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intFormat rep1) x
MO_SS_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intFormat rep1) x
MO_XX_Conv rep1 rep2 | rep1 == rep2 -> conversionNop (intFormat rep1) x
-- widenings
MO_UU_Conv W8 W32 -> integerExtend W8 W32 MOVZxL x
MO_UU_Conv W16 W32 -> integerExtend W16 W32 MOVZxL x
MO_UU_Conv W8 W16 -> integerExtend W8 W16 MOVZxL x
MO_SS_Conv W8 W32 -> integerExtend W8 W32 MOVSxL x
MO_SS_Conv W16 W32 -> integerExtend W16 W32 MOVSxL x
MO_SS_Conv W8 W16 -> integerExtend W8 W16 MOVSxL x
-- We don't care about the upper bits for MO_XX_Conv, so MOV is enough. However, on 32-bit we
-- have 8-bit registers only for a few registers (as opposed to x86-64 where every register
-- has 8-bit version). So for 32-bit code, we'll just zero-extend.
MO_XX_Conv W8 W32
| is32Bit -> integerExtend W8 W32 MOVZxL x
| otherwise -> integerExtend W8 W32 MOV x
MO_XX_Conv W8 W16
| is32Bit -> integerExtend W8 W16 MOVZxL x
| otherwise -> integerExtend W8 W16 MOV x
MO_XX_Conv W16 W32 -> integerExtend W16 W32 MOV x
MO_UU_Conv W8 W64 | not is32Bit -> integerExtend W8 W64 MOVZxL x
MO_UU_Conv W16 W64 | not is32Bit -> integerExtend W16 W64 MOVZxL x
MO_UU_Conv W32 W64 | not is32Bit -> integerExtend W32 W64 MOVZxL x
MO_SS_Conv W8 W64 | not is32Bit -> integerExtend W8 W64 MOVSxL x
MO_SS_Conv W16 W64 | not is32Bit -> integerExtend W16 W64 MOVSxL x
MO_SS_Conv W32 W64 | not is32Bit -> integerExtend W32 W64 MOVSxL x
-- For 32-to-64 bit zero extension, amd64 uses an ordinary movl.
-- However, we don't want the register allocator to throw it
-- away as an unnecessary reg-to-reg move, so we keep it in
-- the form of a movzl and print it as a movl later.
-- This doesn't apply to MO_XX_Conv since in this case we don't care about
-- the upper bits. So we can just use MOV.
MO_XX_Conv W8 W64 | not is32Bit -> integerExtend W8 W64 MOV x
MO_XX_Conv W16 W64 | not is32Bit -> integerExtend W16 W64 MOV x
MO_XX_Conv W32 W64 | not is32Bit -> integerExtend W32 W64 MOV x
MO_FF_Conv W32 W64
| sse2 -> coerceFP2FP W64 x
| otherwise -> conversionNop FF80 x
MO_FF_Conv W64 W32 -> coerceFP2FP W32 x
MO_FS_Conv from to -> coerceFP2Int from to x
MO_SF_Conv from to -> coerceInt2FP from to x
MO_V_Insert {} -> needLlvm
MO_V_Extract {} -> needLlvm
MO_V_Add {} -> needLlvm
MO_V_Sub {} -> needLlvm
MO_V_Mul {} -> needLlvm
MO_VS_Quot {} -> needLlvm
MO_VS_Rem {} -> needLlvm
MO_VS_Neg {} -> needLlvm
MO_VU_Quot {} -> needLlvm
MO_VU_Rem {} -> needLlvm
MO_VF_Insert {} -> needLlvm
MO_VF_Extract {} -> needLlvm
MO_VF_Add {} -> needLlvm
MO_VF_Sub {} -> needLlvm
MO_VF_Mul {} -> needLlvm
MO_VF_Quot {} -> needLlvm
MO_VF_Neg {} -> needLlvm
_other -> pprPanic "getRegister" (pprMachOp mop)
where
triv_ucode :: (Format -> Operand -> Instr) -> Format -> NatM Register
triv_ucode instr format = trivialUCode format (instr format) x
-- signed or unsigned extension.
integerExtend :: Width -> Width
-> (Format -> Operand -> Operand -> Instr)
-> CmmExpr -> NatM Register
integerExtend from to instr expr = do
(reg,e_code) <- if from == W8 then getByteReg expr
else getSomeReg expr
let
code dst =
e_code `snocOL`
instr (intFormat from) (OpReg reg) (OpReg dst)
return (Any (intFormat to) code)
toI8Reg :: Width -> CmmExpr -> NatM Register
toI8Reg new_rep expr
= do codefn <- getAnyReg expr
return (Any (intFormat new_rep) codefn)
-- HACK: use getAnyReg to get a byte-addressable register.
-- If the source was a Fixed register, this will add the
-- mov instruction to put it into the desired destination.
-- We're assuming that the destination won't be a fixed
-- non-byte-addressable register; it won't be, because all
-- fixed registers are word-sized.
toI16Reg = toI8Reg -- for now
conversionNop :: Format -> CmmExpr -> NatM Register
conversionNop new_format expr
= do e_code <- getRegister' dflags is32Bit expr
return (swizzleRegisterRep e_code new_format)
getRegister' _ is32Bit (CmmMachOp mop [x, y]) = do -- dyadic MachOps
sse2 <- sse2Enabled
case mop of
MO_F_Eq _ -> condFltReg is32Bit EQQ x y
MO_F_Ne _ -> condFltReg is32Bit NE x y
MO_F_Gt _ -> condFltReg is32Bit GTT x y
MO_F_Ge _ -> condFltReg is32Bit GE x y
-- Invert comparison condition and swap operands
-- See Note [SSE Parity Checks]
MO_F_Lt _ -> condFltReg is32Bit GTT y x
MO_F_Le _ -> condFltReg is32Bit GE y x
MO_Eq _ -> condIntReg EQQ x y
MO_Ne _ -> condIntReg NE x y
MO_S_Gt _ -> condIntReg GTT x y
MO_S_Ge _ -> condIntReg GE x y
MO_S_Lt _ -> condIntReg LTT x y
MO_S_Le _ -> condIntReg LE x y
MO_U_Gt _ -> condIntReg GU x y
MO_U_Ge _ -> condIntReg GEU x y
MO_U_Lt _ -> condIntReg LU x y
MO_U_Le _ -> condIntReg LEU x y
MO_F_Add w | sse2 -> trivialFCode_sse2 w ADD x y
| otherwise -> trivialFCode_x87 GADD x y
MO_F_Sub w | sse2 -> trivialFCode_sse2 w SUB x y
| otherwise -> trivialFCode_x87 GSUB x y
MO_F_Quot w | sse2 -> trivialFCode_sse2 w FDIV x y
| otherwise -> trivialFCode_x87 GDIV x y
MO_F_Mul w | sse2 -> trivialFCode_sse2 w MUL x y
| otherwise -> trivialFCode_x87 GMUL x y
MO_Add rep -> add_code rep x y
MO_Sub rep -> sub_code rep x y
MO_S_Quot rep -> div_code rep True True x y
MO_S_Rem rep -> div_code rep True False x y
MO_U_Quot rep -> div_code rep False True x y
MO_U_Rem rep -> div_code rep False False x y
MO_S_MulMayOflo rep -> imulMayOflo rep x y
MO_Mul W8 -> imulW8 x y
MO_Mul rep -> triv_op rep IMUL
MO_And rep -> triv_op rep AND
MO_Or rep -> triv_op rep OR
MO_Xor rep -> triv_op rep XOR
{- Shift ops on x86s have constraints on their source, it
either has to be Imm, CL or 1
=> trivialCode is not restrictive enough (sigh.)
-}
MO_Shl rep -> shift_code rep SHL x y {-False-}
MO_U_Shr rep -> shift_code rep SHR x y {-False-}
MO_S_Shr rep -> shift_code rep SAR x y {-False-}
MO_V_Insert {} -> needLlvm
MO_V_Extract {} -> needLlvm
MO_V_Add {} -> needLlvm
MO_V_Sub {} -> needLlvm
MO_V_Mul {} -> needLlvm
MO_VS_Quot {} -> needLlvm
MO_VS_Rem {} -> needLlvm
MO_VS_Neg {} -> needLlvm
MO_VF_Insert {} -> needLlvm
MO_VF_Extract {} -> needLlvm
MO_VF_Add {} -> needLlvm
MO_VF_Sub {} -> needLlvm
MO_VF_Mul {} -> needLlvm
MO_VF_Quot {} -> needLlvm
MO_VF_Neg {} -> needLlvm
_other -> pprPanic "getRegister(x86) - binary CmmMachOp (1)" (pprMachOp mop)
where
--------------------
triv_op width instr = trivialCode width op (Just op) x y
where op = instr (intFormat width)
-- Special case for IMUL for bytes, since the result of IMULB will be in
-- %ax, the split to %dx/%edx/%rdx and %ax/%eax/%rax happens only for wider
-- values.
imulW8 :: CmmExpr -> CmmExpr -> NatM Register
imulW8 arg_a arg_b = do
(a_reg, a_code) <- getNonClobberedReg arg_a
b_code <- getAnyReg arg_b
let code = a_code `appOL` b_code eax `appOL`
toOL [ IMUL2 format (OpReg a_reg) ]
format = intFormat W8
return (Fixed format eax code)
imulMayOflo :: Width -> CmmExpr -> CmmExpr -> NatM Register
imulMayOflo rep a b = do
(a_reg, a_code) <- getNonClobberedReg a
b_code <- getAnyReg b
let
shift_amt = case rep of
W32 -> 31
W64 -> 63
_ -> panic "shift_amt"
format = intFormat rep
code = a_code `appOL` b_code eax `appOL`
toOL [
IMUL2 format (OpReg a_reg), -- result in %edx:%eax
SAR format (OpImm (ImmInt shift_amt)) (OpReg eax),
-- sign extend lower part
SUB format (OpReg edx) (OpReg eax)
-- compare against upper
-- eax==0 if high part == sign extended low part
]
return (Fixed format eax code)
--------------------
shift_code :: Width
-> (Format -> Operand -> Operand -> Instr)
-> CmmExpr
-> CmmExpr
-> NatM Register
{- Case1: shift length as immediate -}
shift_code width instr x (CmmLit lit) = do
x_code <- getAnyReg x
let
format = intFormat width
code dst
= x_code dst `snocOL`
instr format (OpImm (litToImm lit)) (OpReg dst)
return (Any format code)
{- Case2: shift length is complex (non-immediate)
* y must go in %ecx.
* we cannot do y first *and* put its result in %ecx, because
%ecx might be clobbered by x.
* if we do y second, then x cannot be
in a clobbered reg. Also, we cannot clobber x's reg
with the instruction itself.
* so we can either:
- do y first, put its result in a fresh tmp, then copy it to %ecx later
- do y second and put its result into %ecx. x gets placed in a fresh
tmp. This is likely to be better, because the reg alloc can
eliminate this reg->reg move here (it won't eliminate the other one,
because the move is into the fixed %ecx).
-}
shift_code width instr x y{-amount-} = do
x_code <- getAnyReg x
let format = intFormat width
tmp <- getNewRegNat format
y_code <- getAnyReg y
let
code = x_code tmp `appOL`
y_code ecx `snocOL`
instr format (OpReg ecx) (OpReg tmp)
return (Fixed format tmp code)
--------------------
add_code :: Width -> CmmExpr -> CmmExpr -> NatM Register
add_code rep x (CmmLit (CmmInt y _))
| is32BitInteger y = add_int rep x y
add_code rep x y = trivialCode rep (ADD format) (Just (ADD format)) x y
where format = intFormat rep
-- TODO: There are other interesting patterns we want to replace
-- with a LEA, e.g. `(x + offset) + (y << shift)`.
--------------------
sub_code :: Width -> CmmExpr -> CmmExpr -> NatM Register
sub_code rep x (CmmLit (CmmInt y _))
| is32BitInteger (-y) = add_int rep x (-y)
sub_code rep x y = trivialCode rep (SUB (intFormat rep)) Nothing x y
-- our three-operand add instruction:
add_int width x y = do
(x_reg, x_code) <- getSomeReg x
let
format = intFormat width
imm = ImmInt (fromInteger y)
code dst
= x_code `snocOL`
LEA format
(OpAddr (AddrBaseIndex (EABaseReg x_reg) EAIndexNone imm))
(OpReg dst)
--
return (Any format code)
----------------------
-- See Note [DIV/IDIV for bytes]
div_code W8 signed quotient x y = do
let widen | signed = MO_SS_Conv W8 W16
| otherwise = MO_UU_Conv W8 W16
div_code
W16
signed
quotient
(CmmMachOp widen [x])
(CmmMachOp widen [y])
div_code width signed quotient x y = do
(y_op, y_code) <- getRegOrMem y -- cannot be clobbered
x_code <- getAnyReg x
let
format = intFormat width
widen | signed = CLTD format
| otherwise = XOR format (OpReg edx) (OpReg edx)
instr | signed = IDIV
| otherwise = DIV
code = y_code `appOL`
x_code eax `appOL`
toOL [widen, instr format y_op]
result | quotient = eax
| otherwise = edx
return (Fixed format result code)
getRegister' _ _ (CmmLoad mem pk)
| isFloatType pk
= do
Amode addr mem_code <- getAmode mem
use_sse2 <- sse2Enabled
loadFloatAmode use_sse2 (typeWidth pk) addr mem_code
getRegister' _ is32Bit (CmmLoad mem pk)
| is32Bit && not (isWord64 pk)
= do
code <- intLoadCode instr mem
return (Any format code)
where
width = typeWidth pk
format = intFormat width
instr = case width of
W8 -> MOVZxL II8
_other -> MOV format
-- We always zero-extend 8-bit loads, if we
-- can't think of anything better. This is because
-- we can't guarantee access to an 8-bit variant of every register
-- (esi and edi don't have 8-bit variants), so to make things
-- simpler we do our 8-bit arithmetic with full 32-bit registers.
-- Simpler memory load code on x86_64
getRegister' _ is32Bit (CmmLoad mem pk)
| not is32Bit
= do
code <- intLoadCode (MOV format) mem
return (Any format code)
where format = intFormat $ typeWidth pk
getRegister' _ is32Bit (CmmLit (CmmInt 0 width))
= let
format = intFormat width
-- x86_64: 32-bit xor is one byte shorter, and zero-extends to 64 bits
format1 = if is32Bit then format
else case format of
II64 -> II32
_ -> format
code dst
= unitOL (XOR format1 (OpReg dst) (OpReg dst))
in
return (Any format code)
-- optimisation for loading small literals on x86_64: take advantage
-- of the automatic zero-extension from 32 to 64 bits, because the 32-bit
-- instruction forms are shorter.
getRegister' dflags is32Bit (CmmLit lit)
| not is32Bit, isWord64 (cmmLitType dflags lit), not (isBigLit lit)
= let
imm = litToImm lit
code dst = unitOL (MOV II32 (OpImm imm) (OpReg dst))
in
return (Any II64 code)
where
isBigLit (CmmInt i _) = i < 0 || i > 0xffffffff
isBigLit _ = False
-- note1: not the same as (not.is32BitLit), because that checks for
-- signed literals that fit in 32 bits, but we want unsigned
-- literals here.
-- note2: all labels are small, because we're assuming the
-- small memory model (see gcc docs, -mcmodel=small).
getRegister' dflags _ (CmmLit lit)
= do let format = cmmTypeFormat (cmmLitType dflags lit)
imm = litToImm lit
code dst = unitOL (MOV format (OpImm imm) (OpReg dst))
return (Any format code)
getRegister' _ _ other
| isVecExpr other = needLlvm
| otherwise = pprPanic "getRegister(x86)" (ppr other)
intLoadCode :: (Operand -> Operand -> Instr) -> CmmExpr
-> NatM (Reg -> InstrBlock)
intLoadCode instr mem = do
Amode src mem_code <- getAmode mem
return (\dst -> mem_code `snocOL` instr (OpAddr src) (OpReg dst))
-- Compute an expression into *any* register, adding the appropriate
-- move instruction if necessary.
getAnyReg :: CmmExpr -> NatM (Reg -> InstrBlock)
getAnyReg expr = do
r <- getRegister expr
anyReg r
anyReg :: Register -> NatM (Reg -> InstrBlock)
anyReg (Any _ code) = return code
anyReg (Fixed rep reg fcode) = return (\dst -> fcode `snocOL` reg2reg rep reg dst)
-- A bit like getSomeReg, but we want a reg that can be byte-addressed.
-- Fixed registers might not be byte-addressable, so we make sure we've
-- got a temporary, inserting an extra reg copy if necessary.
getByteReg :: CmmExpr -> NatM (Reg, InstrBlock)
getByteReg expr = do
is32Bit <- is32BitPlatform
if is32Bit
then do r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed rep reg code
| isVirtualReg reg -> return (reg,code)
| otherwise -> do
tmp <- getNewRegNat rep
return (tmp, code `snocOL` reg2reg rep reg tmp)
-- ToDo: could optimise slightly by checking for
-- byte-addressable real registers, but that will
-- happen very rarely if at all.
else getSomeReg expr -- all regs are byte-addressable on x86_64
-- Another variant: this time we want the result in a register that cannot
-- be modified by code to evaluate an arbitrary expression.
getNonClobberedReg :: CmmExpr -> NatM (Reg, InstrBlock)
getNonClobberedReg expr = do
dflags <- getDynFlags
r <- getRegister expr
case r of
Any rep code -> do
tmp <- getNewRegNat rep
return (tmp, code tmp)
Fixed rep reg code
-- only certain regs can be clobbered
| reg `elem` instrClobberedRegs (targetPlatform dflags)
-> do
tmp <- getNewRegNat rep
return (tmp, code `snocOL` reg2reg rep reg tmp)
| otherwise ->
return (reg, code)
reg2reg :: Format -> Reg -> Reg -> Instr
reg2reg format src dst
| format == FF80 = GMOV src dst
| otherwise = MOV format (OpReg src) (OpReg dst)
--------------------------------------------------------------------------------
getAmode :: CmmExpr -> NatM Amode
getAmode e = do is32Bit <- is32BitPlatform
getAmode' is32Bit e
getAmode' :: Bool -> CmmExpr -> NatM Amode
getAmode' _ (CmmRegOff r n) = do dflags <- getDynFlags
getAmode $ mangleIndexTree dflags r n
getAmode' is32Bit (CmmMachOp (MO_Add W64) [CmmReg (CmmGlobal PicBaseReg),
CmmLit displacement])
| not is32Bit
= return $ Amode (ripRel (litToImm displacement)) nilOL
-- This is all just ridiculous, since it carefully undoes
-- what mangleIndexTree has just done.
getAmode' is32Bit (CmmMachOp (MO_Sub _rep) [x, CmmLit lit@(CmmInt i _)])
| is32BitLit is32Bit lit
-- ASSERT(rep == II32)???
= do (x_reg, x_code) <- getSomeReg x
let off = ImmInt (-(fromInteger i))
return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
getAmode' is32Bit (CmmMachOp (MO_Add _rep) [x, CmmLit lit])
| is32BitLit is32Bit lit
-- ASSERT(rep == II32)???
= do (x_reg, x_code) <- getSomeReg x
let off = litToImm lit
return (Amode (AddrBaseIndex (EABaseReg x_reg) EAIndexNone off) x_code)
-- Turn (lit1 << n + lit2) into (lit2 + lit1 << n) so it will be
-- recognised by the next rule.
getAmode' is32Bit (CmmMachOp (MO_Add rep) [a@(CmmMachOp (MO_Shl _) _),
b@(CmmLit _)])
= getAmode' is32Bit (CmmMachOp (MO_Add rep) [b,a])
-- Matches: (x + offset) + (y << shift)
getAmode' _ (CmmMachOp (MO_Add _) [CmmRegOff x offset,
CmmMachOp (MO_Shl _)
[y, CmmLit (CmmInt shift _)]])
| shift == 0 || shift == 1 || shift == 2 || shift == 3
= x86_complex_amode (CmmReg x) y shift (fromIntegral offset)
getAmode' _ (CmmMachOp (MO_Add _) [x, CmmMachOp (MO_Shl _)
[y, CmmLit (CmmInt shift _)]])
| shift == 0 || shift == 1 || shift == 2 || shift == 3
= x86_complex_amode x y shift 0
getAmode' _ (CmmMachOp (MO_Add _)
[x, CmmMachOp (MO_Add _)
[CmmMachOp (MO_Shl _) [y, CmmLit (CmmInt shift _)],
CmmLit (CmmInt offset _)]])
| shift == 0 || shift == 1 || shift == 2 || shift == 3
&& is32BitInteger offset
= x86_complex_amode x y shift offset
getAmode' _ (CmmMachOp (MO_Add _) [x,y])
= x86_complex_amode x y 0 0
getAmode' is32Bit (CmmLit lit) | is32BitLit is32Bit lit
= return (Amode (ImmAddr (litToImm lit) 0) nilOL)
getAmode' _ expr = do
(reg,code) <- getSomeReg expr
return (Amode (AddrBaseIndex (EABaseReg reg) EAIndexNone (ImmInt 0)) code)
-- | Like 'getAmode', but on 32-bit use simple register addressing
-- (i.e. no index register). This stops us from running out of
-- registers on x86 when using instructions such as cmpxchg, which can
-- use up to three virtual registers and one fixed register.
getSimpleAmode :: DynFlags -> Bool -> CmmExpr -> NatM Amode
getSimpleAmode dflags is32Bit addr
| is32Bit = do
addr_code <- getAnyReg addr
addr_r <- getNewRegNat (intFormat (wordWidth dflags))
let amode = AddrBaseIndex (EABaseReg addr_r) EAIndexNone (ImmInt 0)
return $! Amode amode (addr_code addr_r)
| otherwise = getAmode addr
x86_complex_amode :: CmmExpr -> CmmExpr -> Integer -> Integer -> NatM Amode
x86_complex_amode base index shift offset
= do (x_reg, x_code) <- getNonClobberedReg base
-- x must be in a temp, because it has to stay live over y_code
-- we could compre x_reg and y_reg and do something better here...
(y_reg, y_code) <- getSomeReg index
let
code = x_code `appOL` y_code
base = case shift of 0 -> 1; 1 -> 2; 2 -> 4; 3 -> 8;
n -> panic $ "x86_complex_amode: unhandled shift! (" ++ show n ++ ")"
return (Amode (AddrBaseIndex (EABaseReg x_reg) (EAIndex y_reg base) (ImmInt (fromIntegral offset)))
code)
-- -----------------------------------------------------------------------------
-- getOperand: sometimes any operand will do.
-- getNonClobberedOperand: the value of the operand will remain valid across
-- the computation of an arbitrary expression, unless the expression
-- is computed directly into a register which the operand refers to
-- (see trivialCode where this function is used for an example).
getNonClobberedOperand :: CmmExpr -> NatM (Operand, InstrBlock)
getNonClobberedOperand (CmmLit lit) = do
use_sse2 <- sse2Enabled
if use_sse2 && isSuitableFloatingPointLit lit
then do
let CmmFloat _ w = lit
Amode addr code <- memConstant (widthInBytes w) lit
return (OpAddr addr, code)
else do
is32Bit <- is32BitPlatform
dflags <- getDynFlags
if is32BitLit is32Bit lit && not (isFloatType (cmmLitType dflags lit))
then return (OpImm (litToImm lit), nilOL)
else getNonClobberedOperand_generic (CmmLit lit)
getNonClobberedOperand (CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
use_sse2 <- sse2Enabled
if (not (isFloatType pk) || use_sse2)
&& (if is32Bit then not (isWord64 pk) else True)
then do
dflags <- getDynFlags
let platform = targetPlatform dflags
Amode src mem_code <- getAmode mem
(src',save_code) <-
if (amodeCouldBeClobbered platform src)
then do
tmp <- getNewRegNat (archWordFormat is32Bit)
return (AddrBaseIndex (EABaseReg tmp) EAIndexNone (ImmInt 0),
unitOL (LEA (archWordFormat is32Bit)
(OpAddr src)
(OpReg tmp)))
else
return (src, nilOL)
return (OpAddr src', mem_code `appOL` save_code)
else do
getNonClobberedOperand_generic (CmmLoad mem pk)
getNonClobberedOperand e = getNonClobberedOperand_generic e
getNonClobberedOperand_generic :: CmmExpr -> NatM (Operand, InstrBlock)
getNonClobberedOperand_generic e = do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
amodeCouldBeClobbered :: Platform -> AddrMode -> Bool
amodeCouldBeClobbered platform amode = any (regClobbered platform) (addrModeRegs amode)
regClobbered :: Platform -> Reg -> Bool
regClobbered platform (RegReal (RealRegSingle rr)) = freeReg platform rr
regClobbered _ _ = False
-- getOperand: the operand is not required to remain valid across the
-- computation of an arbitrary expression.
getOperand :: CmmExpr -> NatM (Operand, InstrBlock)
getOperand (CmmLit lit) = do
use_sse2 <- sse2Enabled
if (use_sse2 && isSuitableFloatingPointLit lit)
then do
let CmmFloat _ w = lit
Amode addr code <- memConstant (widthInBytes w) lit
return (OpAddr addr, code)
else do
is32Bit <- is32BitPlatform
dflags <- getDynFlags
if is32BitLit is32Bit lit && not (isFloatType (cmmLitType dflags lit))
then return (OpImm (litToImm lit), nilOL)
else getOperand_generic (CmmLit lit)
getOperand (CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
use_sse2 <- sse2Enabled
if (not (isFloatType pk) || use_sse2) && (if is32Bit then not (isWord64 pk) else True)
then do
Amode src mem_code <- getAmode mem
return (OpAddr src, mem_code)
else
getOperand_generic (CmmLoad mem pk)
getOperand e = getOperand_generic e
getOperand_generic :: CmmExpr -> NatM (Operand, InstrBlock)
getOperand_generic e = do
(reg, code) <- getSomeReg e
return (OpReg reg, code)
isOperand :: Bool -> CmmExpr -> Bool
isOperand _ (CmmLoad _ _) = True
isOperand is32Bit (CmmLit lit) = is32BitLit is32Bit lit
|| isSuitableFloatingPointLit lit
isOperand _ _ = False
-- | Given a 'Register', produce a new 'Register' with an instruction block
-- which will check the value for alignment. Used for @-falignment-sanitisation@.
addAlignmentCheck :: Int -> Register -> Register
addAlignmentCheck align reg =
case reg of
Fixed fmt reg code -> Fixed fmt reg (code `appOL` check fmt reg)
Any fmt f -> Any fmt (\reg -> f reg `appOL` check fmt reg)
where
check :: Format -> Reg -> InstrBlock
check fmt reg =
ASSERT(not $ isFloatFormat fmt)
toOL [ TEST fmt (OpImm $ ImmInt $ align-1) (OpReg reg)
, JXX_GBL NE $ ImmCLbl mkBadAlignmentLabel
]
memConstant :: Int -> CmmLit -> NatM Amode
memConstant align lit = do
lbl <- getNewLabelNat
let rosection = Section ReadOnlyData lbl
dflags <- getDynFlags
(addr, addr_code) <- if target32Bit (targetPlatform dflags)
then do dynRef <- cmmMakeDynamicReference
dflags
DataReference
lbl
Amode addr addr_code <- getAmode dynRef
return (addr, addr_code)
else return (ripRel (ImmCLbl lbl), nilOL)
let code =
LDATA rosection (align, Statics lbl [CmmStaticLit lit])
`consOL` addr_code
return (Amode addr code)
loadFloatAmode :: Bool -> Width -> AddrMode -> InstrBlock -> NatM Register
loadFloatAmode use_sse2 w addr addr_code = do
let format = floatFormat w
code dst = addr_code `snocOL`
if use_sse2
then MOV format (OpAddr addr) (OpReg dst)
else GLD format addr dst
return (Any (if use_sse2 then format else FF80) code)
-- if we want a floating-point literal as an operand, we can
-- use it directly from memory. However, if the literal is
-- zero, we're better off generating it into a register using
-- xor.
isSuitableFloatingPointLit :: CmmLit -> Bool
isSuitableFloatingPointLit (CmmFloat f _) = f /= 0.0
isSuitableFloatingPointLit _ = False
getRegOrMem :: CmmExpr -> NatM (Operand, InstrBlock)
getRegOrMem e@(CmmLoad mem pk) = do
is32Bit <- is32BitPlatform
use_sse2 <- sse2Enabled
if (not (isFloatType pk) || use_sse2) && (if is32Bit then not (isWord64 pk) else True)
then do
Amode src mem_code <- getAmode mem
return (OpAddr src, mem_code)
else do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
getRegOrMem e = do
(reg, code) <- getNonClobberedReg e
return (OpReg reg, code)
is32BitLit :: Bool -> CmmLit -> Bool
is32BitLit is32Bit (CmmInt i W64)
| not is32Bit
= -- assume that labels are in the range 0-2^31-1: this assumes the
-- small memory model (see gcc docs, -mcmodel=small).
is32BitInteger i
is32BitLit _ _ = True
-- Set up a condition code for a conditional branch.
getCondCode :: CmmExpr -> NatM CondCode
-- yes, they really do seem to want exactly the same!
getCondCode (CmmMachOp mop [x, y])
=
case mop of
MO_F_Eq W32 -> condFltCode EQQ x y
MO_F_Ne W32 -> condFltCode NE x y
MO_F_Gt W32 -> condFltCode GTT x y
MO_F_Ge W32 -> condFltCode GE x y
-- Invert comparison condition and swap operands
-- See Note [SSE Parity Checks]
MO_F_Lt W32 -> condFltCode GTT y x
MO_F_Le W32 -> condFltCode GE y x
MO_F_Eq W64 -> condFltCode EQQ x y
MO_F_Ne W64 -> condFltCode NE x y
MO_F_Gt W64 -> condFltCode GTT x y
MO_F_Ge W64 -> condFltCode GE x y
MO_F_Lt W64 -> condFltCode GTT y x
MO_F_Le W64 -> condFltCode GE y x
_ -> condIntCode (machOpToCond mop) x y
getCondCode other = pprPanic "getCondCode(2)(x86,x86_64)" (ppr other)
machOpToCond :: MachOp -> Cond
machOpToCond mo = case mo of
MO_Eq _ -> EQQ
MO_Ne _ -> NE
MO_S_Gt _ -> GTT
MO_S_Ge _ -> GE
MO_S_Lt _ -> LTT
MO_S_Le _ -> LE
MO_U_Gt _ -> GU
MO_U_Ge _ -> GEU
MO_U_Lt _ -> LU
MO_U_Le _ -> LEU
_other -> pprPanic "machOpToCond" (pprMachOp mo)
-- @cond(Int|Flt)Code@: Turn a boolean expression into a condition, to be
-- passed back up the tree.
condIntCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode
condIntCode cond x y = do is32Bit <- is32BitPlatform
condIntCode' is32Bit cond x y
condIntCode' :: Bool -> Cond -> CmmExpr -> CmmExpr -> NatM CondCode
-- memory vs immediate
condIntCode' is32Bit cond (CmmLoad x pk) (CmmLit lit)
| is32BitLit is32Bit lit = do
Amode x_addr x_code <- getAmode x
let
imm = litToImm lit
code = x_code `snocOL`
CMP (cmmTypeFormat pk) (OpImm imm) (OpAddr x_addr)
--
return (CondCode False cond code)
-- anything vs zero, using a mask
-- TODO: Add some sanity checking!!!!
condIntCode' is32Bit cond (CmmMachOp (MO_And _) [x,o2]) (CmmLit (CmmInt 0 pk))
| (CmmLit lit@(CmmInt mask _)) <- o2, is32BitLit is32Bit lit
= do
(x_reg, x_code) <- getSomeReg x
let
code = x_code `snocOL`
TEST (intFormat pk) (OpImm (ImmInteger mask)) (OpReg x_reg)
--
return (CondCode False cond code)
-- anything vs zero
condIntCode' _ cond x (CmmLit (CmmInt 0 pk)) = do
(x_reg, x_code) <- getSomeReg x
let
code = x_code `snocOL`
TEST (intFormat pk) (OpReg x_reg) (OpReg x_reg)
--
return (CondCode False cond code)
-- anything vs operand
condIntCode' is32Bit cond x y
| isOperand is32Bit y = do
dflags <- getDynFlags
(x_reg, x_code) <- getNonClobberedReg x
(y_op, y_code) <- getOperand y
let
code = x_code `appOL` y_code `snocOL`
CMP (cmmTypeFormat (cmmExprType dflags x)) y_op (OpReg x_reg)
return (CondCode False cond code)
-- operand vs. anything: invert the comparison so that we can use a
-- single comparison instruction.
| isOperand is32Bit x
, Just revcond <- maybeFlipCond cond = do
dflags <- getDynFlags
(y_reg, y_code) <- getNonClobberedReg y
(x_op, x_code) <- getOperand x
let
code = y_code `appOL` x_code `snocOL`
CMP (cmmTypeFormat (cmmExprType dflags x)) x_op (OpReg y_reg)
return (CondCode False revcond code)
-- anything vs anything
condIntCode' _ cond x y = do
dflags <- getDynFlags
(y_reg, y_code) <- getNonClobberedReg y
(x_op, x_code) <- getRegOrMem x
let
code = y_code `appOL`
x_code `snocOL`
CMP (cmmTypeFormat (cmmExprType dflags x)) (OpReg y_reg) x_op
return (CondCode False cond code)
--------------------------------------------------------------------------------
condFltCode :: Cond -> CmmExpr -> CmmExpr -> NatM CondCode
condFltCode cond x y
= if_sse2 condFltCode_sse2 condFltCode_x87
where
condFltCode_x87
= ASSERT(cond `elem` ([EQQ, NE, LE, LTT, GE, GTT])) do
(x_reg, x_code) <- getNonClobberedReg x
(y_reg, y_code) <- getSomeReg y
let
code = x_code `appOL` y_code `snocOL`
GCMP cond x_reg y_reg
-- The GCMP insn does the test and sets the zero flag if comparable
-- and true. Hence we always supply EQQ as the condition to test.
return (CondCode True EQQ code)
-- in the SSE2 comparison ops (ucomiss, ucomisd) the left arg may be
-- an operand, but the right must be a reg. We can probably do better
-- than this general case...
condFltCode_sse2 = do
dflags <- getDynFlags
(x_reg, x_code) <- getNonClobberedReg x
(y_op, y_code) <- getOperand y
let
code = x_code `appOL`
y_code `snocOL`
CMP (floatFormat $ cmmExprWidth dflags x) y_op (OpReg x_reg)
-- NB(1): we need to use the unsigned comparison operators on the
-- result of this comparison.
return (CondCode True (condToUnsigned cond) code)
-- -----------------------------------------------------------------------------
-- Generating assignments
-- Assignments are really at the heart of the whole code generation
-- business. Almost all top-level nodes of any real importance are
-- assignments, which correspond to loads, stores, or register
-- transfers. If we're really lucky, some of the register transfers
-- will go away, because we can use the destination register to
-- complete the code generation for the right hand side. This only
-- fails when the right hand side is forced into a fixed register
-- (e.g. the result of a call).
assignMem_IntCode :: Format -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_IntCode :: Format -> CmmReg -> CmmExpr -> NatM InstrBlock
assignMem_FltCode :: Format -> CmmExpr -> CmmExpr -> NatM InstrBlock
assignReg_FltCode :: Format -> CmmReg -> CmmExpr -> NatM InstrBlock
-- integer assignment to memory
-- specific case of adding/subtracting an integer to a particular address.
-- ToDo: catch other cases where we can use an operation directly on a memory
-- address.
assignMem_IntCode pk addr (CmmMachOp op [CmmLoad addr2 _,
CmmLit (CmmInt i _)])
| addr == addr2, pk /= II64 || is32BitInteger i,
Just instr <- check op
= do Amode amode code_addr <- getAmode addr
let code = code_addr `snocOL`
instr pk (OpImm (ImmInt (fromIntegral i))) (OpAddr amode)
return code
where
check (MO_Add _) = Just ADD
check (MO_Sub _) = Just SUB
check _ = Nothing
-- ToDo: more?
-- general case
assignMem_IntCode pk addr src = do
is32Bit <- is32BitPlatform
Amode addr code_addr <- getAmode addr
(code_src, op_src) <- get_op_RI is32Bit src
let
code = code_src `appOL`
code_addr `snocOL`
MOV pk op_src (OpAddr addr)
-- NOTE: op_src is stable, so it will still be valid
-- after code_addr. This may involve the introduction
-- of an extra MOV to a temporary register, but we hope
-- the register allocator will get rid of it.
--
return code
where
get_op_RI :: Bool -> CmmExpr -> NatM (InstrBlock,Operand) -- code, operator
get_op_RI is32Bit (CmmLit lit) | is32BitLit is32Bit lit
= return (nilOL, OpImm (litToImm lit))
get_op_RI _ op
= do (reg,code) <- getNonClobberedReg op
return (code, OpReg reg)
-- Assign; dst is a reg, rhs is mem
assignReg_IntCode pk reg (CmmLoad src _) = do
load_code <- intLoadCode (MOV pk) src
dflags <- getDynFlags
let platform = targetPlatform dflags
return (load_code (getRegisterReg platform False{-no sse2-} reg))
-- dst is a reg, but src could be anything
assignReg_IntCode _ reg src = do
dflags <- getDynFlags
let platform = targetPlatform dflags
code <- getAnyReg src
return (code (getRegisterReg platform False{-no sse2-} reg))
-- Floating point assignment to memory
assignMem_FltCode pk addr src = do
(src_reg, src_code) <- getNonClobberedReg src
Amode addr addr_code <- getAmode addr
use_sse2 <- sse2Enabled
let
code = src_code `appOL`
addr_code `snocOL`
if use_sse2 then MOV pk (OpReg src_reg) (OpAddr addr)
else GST pk src_reg addr
return code
-- Floating point assignment to a register/temporary
assignReg_FltCode _ reg src = do
use_sse2 <- sse2Enabled
src_code <- getAnyReg src
dflags <- getDynFlags
let platform = targetPlatform dflags
return (src_code (getRegisterReg platform use_sse2 reg))
genJump :: CmmExpr{-the branch target-} -> [Reg] -> NatM InstrBlock
genJump (CmmLoad mem _) regs = do
Amode target code <- getAmode mem
return (code `snocOL` JMP (OpAddr target) regs)
genJump (CmmLit lit) regs = do
return (unitOL (JMP (OpImm (litToImm lit)) regs))
genJump expr regs = do
(reg,code) <- getSomeReg expr
return (code `snocOL` JMP (OpReg reg) regs)
-- -----------------------------------------------------------------------------
-- Unconditional branches
genBranch :: BlockId -> InstrBlock
genBranch = toOL . mkJumpInstr
-- -----------------------------------------------------------------------------
-- Conditional jumps/branches
{-
Conditional jumps are always to local labels, so we can use branch
instructions. We peek at the arguments to decide what kind of
comparison to do.
I386: First, we have to ensure that the condition
codes are set according to the supplied comparison operation.
-}
genCondBranch
:: BlockId -- the source of the jump
-> BlockId -- the true branch target
-> BlockId -- the false branch target
-> CmmExpr -- the condition on which to branch
-> NatM InstrBlock -- Instructions
genCondBranch bid id false expr = do
is32Bit <- is32BitPlatform
genCondBranch' is32Bit bid id false expr
-- | We return the instructions generated.
genCondBranch' :: Bool -> BlockId -> BlockId -> BlockId -> CmmExpr
-> NatM InstrBlock
-- 64-bit integer comparisons on 32-bit
genCondBranch' is32Bit _bid true false (CmmMachOp mop [e1,e2])
| is32Bit, Just W64 <- maybeIntComparison mop = do
ChildCode64 code1 r1_lo <- iselExpr64 e1
ChildCode64 code2 r2_lo <- iselExpr64 e2
let r1_hi = getHiVRegFromLo r1_lo
r2_hi = getHiVRegFromLo r2_lo
cond = machOpToCond mop
Just cond' = maybeFlipCond cond
--TODO: Update CFG for x86
let code = code1 `appOL` code2 `appOL` toOL [
CMP II32 (OpReg r2_hi) (OpReg r1_hi),
JXX cond true,
JXX cond' false,
CMP II32 (OpReg r2_lo) (OpReg r1_lo),
JXX cond true] `appOL` genBranch false
return code
genCondBranch' _ bid id false bool = do
CondCode is_float cond cond_code <- getCondCode bool
use_sse2 <- sse2Enabled
if not is_float || not use_sse2
then
return (cond_code `snocOL` JXX cond id `appOL` genBranch false)
else do
-- See Note [SSE Parity Checks]
let jmpFalse = genBranch false
code
= case cond of
NE -> or_unordered
GU -> plain_test
GEU -> plain_test
-- Use ASSERT so we don't break releases if
-- LTT/LE creep in somehow.
LTT ->
ASSERT2(False, ppr "Should have been turned into >")
and_ordered
LE ->
ASSERT2(False, ppr "Should have been turned into >=")
and_ordered
_ -> and_ordered
plain_test = unitOL (
JXX cond id
) `appOL` jmpFalse
or_unordered = toOL [
JXX cond id,
JXX PARITY id
] `appOL` jmpFalse
and_ordered = toOL [
JXX PARITY false,
JXX cond id,
JXX ALWAYS false
]
updateCfgNat (\cfg -> adjustEdgeWeight cfg (+3) bid false)
return (cond_code `appOL` code)
-- -----------------------------------------------------------------------------
-- Generating C calls
-- Now the biggest nightmare---calls. Most of the nastiness is buried in
-- @get_arg@, which moves the arguments to the correct registers/stack
-- locations. Apart from that, the code is easy.
--
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
genCCall
:: DynFlags
-> Bool -- 32 bit platform?
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> BlockId -- The block we are in
-> NatM InstrBlock
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-- Unroll memcpy calls if the source and destination pointers are at
-- least DWORD aligned and the number of bytes to copy isn't too
-- large. Otherwise, call C's memcpy.
genCCall dflags is32Bit (PrimTarget (MO_Memcpy align)) _
[dst, src, CmmLit (CmmInt n _)] _
| fromInteger insns <= maxInlineMemcpyInsns dflags && align .&. 3 == 0 = do
code_dst <- getAnyReg dst
dst_r <- getNewRegNat format
code_src <- getAnyReg src
src_r <- getNewRegNat format
tmp_r <- getNewRegNat format
return $ code_dst dst_r `appOL` code_src src_r `appOL`
go dst_r src_r tmp_r (fromInteger n)
where
-- The number of instructions we will generate (approx). We need 2
-- instructions per move.
insns = 2 * ((n + sizeBytes - 1) `div` sizeBytes)
format = if align .&. 4 /= 0 then II32 else (archWordFormat is32Bit)
-- The size of each move, in bytes.
sizeBytes :: Integer
sizeBytes = fromIntegral (formatInBytes format)
go :: Reg -> Reg -> Reg -> Integer -> OrdList Instr
go dst src tmp i
| i >= sizeBytes =
unitOL (MOV format (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV format (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - sizeBytes)
-- Deal with remaining bytes.
| i >= 4 = -- Will never happen on 32-bit
unitOL (MOV II32 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II32 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 4)
| i >= 2 =
unitOL (MOVZxL II16 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II16 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 2)
| i >= 1 =
unitOL (MOVZxL II8 (OpAddr src_addr) (OpReg tmp)) `appOL`
unitOL (MOV II8 (OpReg tmp) (OpAddr dst_addr)) `appOL`
go dst src tmp (i - 1)
| otherwise = nilOL
where
src_addr = AddrBaseIndex (EABaseReg src) EAIndexNone
(ImmInteger (n - i))
dst_addr = AddrBaseIndex (EABaseReg dst) EAIndexNone
(ImmInteger (n - i))
genCCall dflags _ (PrimTarget (MO_Memset align)) _
[dst,
CmmLit (CmmInt c _),
CmmLit (CmmInt n _)]
_
| fromInteger insns <= maxInlineMemsetInsns dflags && align .&. 3 == 0 = do
code_dst <- getAnyReg dst
dst_r <- getNewRegNat format
return $ code_dst dst_r `appOL` go dst_r (fromInteger n)
where
(format, val) = case align .&. 3 of
2 -> (II16, c2)
0 -> (II32, c4)
_ -> (II8, c)
c2 = c `shiftL` 8 .|. c
c4 = c2 `shiftL` 16 .|. c2
-- The number of instructions we will generate (approx). We need 1
-- instructions per move.
insns = (n + sizeBytes - 1) `div` sizeBytes
-- The size of each move, in bytes.
sizeBytes :: Integer
sizeBytes = fromIntegral (formatInBytes format)
go :: Reg -> Integer -> OrdList Instr
go dst i
-- TODO: Add movabs instruction and support 64-bit sets.
| i >= sizeBytes = -- This might be smaller than the below sizes
unitOL (MOV format (OpImm (ImmInteger val)) (OpAddr dst_addr)) `appOL`
go dst (i - sizeBytes)
| i >= 4 = -- Will never happen on 32-bit
unitOL (MOV II32 (OpImm (ImmInteger c4)) (OpAddr dst_addr)) `appOL`
go dst (i - 4)
| i >= 2 =
unitOL (MOV II16 (OpImm (ImmInteger c2)) (OpAddr dst_addr)) `appOL`
go dst (i - 2)
| i >= 1 =
unitOL (MOV II8 (OpImm (ImmInteger c)) (OpAddr dst_addr)) `appOL`
go dst (i - 1)
| otherwise = nilOL
where
dst_addr = AddrBaseIndex (EABaseReg dst) EAIndexNone
(ImmInteger (n - i))
genCCall _ _ (PrimTarget MO_WriteBarrier) _ _ _ = return nilOL
-- write barrier compiles to no code on x86/x86-64;
-- we keep it this long in order to prevent earlier optimisations.
genCCall _ _ (PrimTarget MO_Touch) _ _ _ = return nilOL
genCCall _ is32bit (PrimTarget (MO_Prefetch_Data n )) _ [src] _ =
case n of
0 -> genPrefetch src $ PREFETCH NTA format
1 -> genPrefetch src $ PREFETCH Lvl2 format
2 -> genPrefetch src $ PREFETCH Lvl1 format
3 -> genPrefetch src $ PREFETCH Lvl0 format
l -> panic $ "unexpected prefetch level in genCCall MO_Prefetch_Data: " ++ (show l)
-- the c / llvm prefetch convention is 0, 1, 2, and 3
-- the x86 corresponding names are : NTA, 2 , 1, and 0
where
format = archWordFormat is32bit
-- need to know what register width for pointers!
genPrefetch inRegSrc prefetchCTor =
do
code_src <- getAnyReg inRegSrc
src_r <- getNewRegNat format
return $ code_src src_r `appOL`
(unitOL (prefetchCTor (OpAddr
((AddrBaseIndex (EABaseReg src_r ) EAIndexNone (ImmInt 0)))) ))
-- prefetch always takes an address
genCCall dflags is32Bit (PrimTarget (MO_BSwap width)) [dst] [src] _ = do
let platform = targetPlatform dflags
let dst_r = getRegisterReg platform False (CmmLocal dst)
case width of
W64 | is32Bit -> do
ChildCode64 vcode rlo <- iselExpr64 src
let dst_rhi = getHiVRegFromLo dst_r
rhi = getHiVRegFromLo rlo
return $ vcode `appOL`
toOL [ MOV II32 (OpReg rlo) (OpReg dst_rhi),
MOV II32 (OpReg rhi) (OpReg dst_r),
BSWAP II32 dst_rhi,
BSWAP II32 dst_r ]
W16 -> do code_src <- getAnyReg src
return $ code_src dst_r `appOL`
unitOL (BSWAP II32 dst_r) `appOL`
unitOL (SHR II32 (OpImm $ ImmInt 16) (OpReg dst_r))
_ -> do code_src <- getAnyReg src
return $ code_src dst_r `appOL` unitOL (BSWAP format dst_r)
where
format = intFormat width
genCCall dflags is32Bit (PrimTarget (MO_PopCnt width)) dest_regs@[dst]
args@[src] bid = do
sse4_2 <- sse4_2Enabled
let platform = targetPlatform dflags
if sse4_2
then do code_src <- getAnyReg src
src_r <- getNewRegNat format
let dst_r = getRegisterReg platform False (CmmLocal dst)
return $ code_src src_r `appOL`
(if width == W8 then
-- The POPCNT instruction doesn't take a r/m8
unitOL (MOVZxL II8 (OpReg src_r) (OpReg src_r)) `appOL`
unitOL (POPCNT II16 (OpReg src_r) dst_r)
else
unitOL (POPCNT format (OpReg src_r) dst_r)) `appOL`
(if width == W8 || width == W16 then
-- We used a 16-bit destination register above,
-- so zero-extend
unitOL (MOVZxL II16 (OpReg dst_r) (OpReg dst_r))
else nilOL)
else do
targetExpr <- cmmMakeDynamicReference dflags
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall dflags is32Bit target dest_regs args bid
where
format = intFormat width
lbl = mkCmmCodeLabel primUnitId (fsLit (popCntLabel width))
genCCall dflags is32Bit (PrimTarget (MO_Pdep width)) dest_regs@[dst]
args@[src, mask] bid = do
let platform = targetPlatform dflags
if isBmi2Enabled dflags
then do code_src <- getAnyReg src
code_mask <- getAnyReg mask
src_r <- getNewRegNat format
mask_r <- getNewRegNat format
let dst_r = getRegisterReg platform False (CmmLocal dst)
return $ code_src src_r `appOL` code_mask mask_r `appOL`
(if width == W8 then
-- The PDEP instruction doesn't take a r/m8
unitOL (MOVZxL II8 (OpReg src_r ) (OpReg src_r )) `appOL`
unitOL (MOVZxL II8 (OpReg mask_r) (OpReg mask_r)) `appOL`
unitOL (PDEP II16 (OpReg mask_r) (OpReg src_r ) dst_r)
else
unitOL (PDEP format (OpReg mask_r) (OpReg src_r) dst_r)) `appOL`
(if width == W8 || width == W16 then
-- We used a 16-bit destination register above,
-- so zero-extend
unitOL (MOVZxL II16 (OpReg dst_r) (OpReg dst_r))
else nilOL)
else do
targetExpr <- cmmMakeDynamicReference dflags
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall dflags is32Bit target dest_regs args bid
where
format = intFormat width
lbl = mkCmmCodeLabel primUnitId (fsLit (pdepLabel width))
genCCall dflags is32Bit (PrimTarget (MO_Pext width)) dest_regs@[dst]
args@[src, mask] bid = do
let platform = targetPlatform dflags
if isBmi2Enabled dflags
then do code_src <- getAnyReg src
code_mask <- getAnyReg mask
src_r <- getNewRegNat format
mask_r <- getNewRegNat format
let dst_r = getRegisterReg platform False (CmmLocal dst)
return $ code_src src_r `appOL` code_mask mask_r `appOL`
(if width == W8 then
-- The PEXT instruction doesn't take a r/m8
unitOL (MOVZxL II8 (OpReg src_r ) (OpReg src_r )) `appOL`
unitOL (MOVZxL II8 (OpReg mask_r) (OpReg mask_r)) `appOL`
unitOL (PEXT II16 (OpReg mask_r) (OpReg src_r) dst_r)
else
unitOL (PEXT format (OpReg mask_r) (OpReg src_r) dst_r)) `appOL`
(if width == W8 || width == W16 then
-- We used a 16-bit destination register above,
-- so zero-extend
unitOL (MOVZxL II16 (OpReg dst_r) (OpReg dst_r))
else nilOL)
else do
targetExpr <- cmmMakeDynamicReference dflags
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall dflags is32Bit target dest_regs args bid
where
format = intFormat width
lbl = mkCmmCodeLabel primUnitId (fsLit (pextLabel width))
genCCall dflags is32Bit (PrimTarget (MO_Clz width)) dest_regs@[dst] args@[src] bid
| is32Bit && width == W64 = do
-- Fallback to `hs_clz64` on i386
targetExpr <- cmmMakeDynamicReference dflags CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall dflags is32Bit target dest_regs args bid
| otherwise = do
code_src <- getAnyReg src
let dst_r = getRegisterReg platform False (CmmLocal dst)
if isBmi2Enabled dflags
then do
src_r <- getNewRegNat (intFormat width)
return $ appOL (code_src src_r) $ case width of
W8 -> toOL
[ MOVZxL II8 (OpReg src_r) (OpReg src_r) -- zero-extend to 32 bit
, LZCNT II32 (OpReg src_r) dst_r -- lzcnt with extra 24 zeros
, SUB II32 (OpImm (ImmInt 24)) (OpReg dst_r) -- compensate for extra zeros
]
W16 -> toOL
[ LZCNT II16 (OpReg src_r) dst_r
, MOVZxL II16 (OpReg dst_r) (OpReg dst_r) -- zero-extend from 16 bit
]
_ -> unitOL (LZCNT (intFormat width) (OpReg src_r) dst_r)
else do
let format = if width == W8 then II16 else intFormat width
src_r <- getNewRegNat format
tmp_r <- getNewRegNat format
return $ code_src src_r `appOL` toOL
([ MOVZxL II8 (OpReg src_r) (OpReg src_r) | width == W8 ] ++
[ BSR format (OpReg src_r) tmp_r
, MOV II32 (OpImm (ImmInt (2*bw-1))) (OpReg dst_r)
, CMOV NE format (OpReg tmp_r) dst_r
, XOR format (OpImm (ImmInt (bw-1))) (OpReg dst_r)
]) -- NB: We don't need to zero-extend the result for the
-- W8/W16 cases because the 'MOV' insn already
-- took care of implicitly clearing the upper bits
where
bw = widthInBits width
platform = targetPlatform dflags
lbl = mkCmmCodeLabel primUnitId (fsLit (clzLabel width))
genCCall dflags is32Bit (PrimTarget (MO_Ctz width)) [dst] [src] bid
| is32Bit, width == W64 = do
ChildCode64 vcode rlo <- iselExpr64 src
let rhi = getHiVRegFromLo rlo
dst_r = getRegisterReg platform False (CmmLocal dst)
lbl1 <- getBlockIdNat
lbl2 <- getBlockIdNat
let format = if width == W8 then II16 else intFormat width
tmp_r <- getNewRegNat format
-- New CFG Edges:
-- bid -> lbl2
-- bid -> lbl1 -> lbl2
-- We also changes edges originating at bid to start at lbl2 instead.
updateCfgNat (addWeightEdge bid lbl1 110 .
addWeightEdge lbl1 lbl2 110 .
addImmediateSuccessor bid lbl2)
-- The following instruction sequence corresponds to the pseudo-code
--
-- if (src) {
-- dst = src.lo32 ? BSF(src.lo32) : (BSF(src.hi32) + 32);
-- } else {
-- dst = 64;
-- }
return $ vcode `appOL` toOL
([ MOV II32 (OpReg rhi) (OpReg tmp_r)
, OR II32 (OpReg rlo) (OpReg tmp_r)
, MOV II32 (OpImm (ImmInt 64)) (OpReg dst_r)
, JXX EQQ lbl2
, JXX ALWAYS lbl1
, NEWBLOCK lbl1
, BSF II32 (OpReg rhi) dst_r
, ADD II32 (OpImm (ImmInt 32)) (OpReg dst_r)
, BSF II32 (OpReg rlo) tmp_r
, CMOV NE II32 (OpReg tmp_r) dst_r
, JXX ALWAYS lbl2
, NEWBLOCK lbl2
])
| otherwise = do
code_src <- getAnyReg src
let dst_r = getRegisterReg platform False (CmmLocal dst)
if isBmi2Enabled dflags
then do
src_r <- getNewRegNat (intFormat width)
return $ appOL (code_src src_r) $ case width of
W8 -> toOL
[ OR II32 (OpImm (ImmInteger 0xFFFFFF00)) (OpReg src_r)
, TZCNT II32 (OpReg src_r) dst_r
]
W16 -> toOL
[ TZCNT II16 (OpReg src_r) dst_r
, MOVZxL II16 (OpReg dst_r) (OpReg dst_r)
]
_ -> unitOL $ TZCNT (intFormat width) (OpReg src_r) dst_r
else do
-- The following insn sequence makes sure 'ctz 0' has a defined value.
-- starting with Haswell, one could use the TZCNT insn instead.
let format = if width == W8 then II16 else intFormat width
src_r <- getNewRegNat format
tmp_r <- getNewRegNat format
return $ code_src src_r `appOL` toOL
([ MOVZxL II8 (OpReg src_r) (OpReg src_r) | width == W8 ] ++
[ BSF format (OpReg src_r) tmp_r
, MOV II32 (OpImm (ImmInt bw)) (OpReg dst_r)
, CMOV NE format (OpReg tmp_r) dst_r
]) -- NB: We don't need to zero-extend the result for the
-- W8/W16 cases because the 'MOV' insn already
-- took care of implicitly clearing the upper bits
where
bw = widthInBits width
platform = targetPlatform dflags
genCCall dflags is32Bit (PrimTarget (MO_UF_Conv width)) dest_regs args bid = do
targetExpr <- cmmMakeDynamicReference dflags
CallReference lbl
let target = ForeignTarget targetExpr (ForeignConvention CCallConv
[NoHint] [NoHint]
CmmMayReturn)
genCCall dflags is32Bit target dest_regs args bid
where
lbl = mkCmmCodeLabel primUnitId (fsLit (word2FloatLabel width))
genCCall dflags is32Bit (PrimTarget (MO_AtomicRMW width amop))
[dst] [addr, n] bid = do
Amode amode addr_code <-
if amop `elem` [AMO_Add, AMO_Sub]
then getAmode addr
else getSimpleAmode dflags is32Bit addr -- See genCCall for MO_Cmpxchg
arg <- getNewRegNat format
arg_code <- getAnyReg n
use_sse2 <- sse2Enabled
let platform = targetPlatform dflags
dst_r = getRegisterReg platform use_sse2 (CmmLocal dst)
code <- op_code dst_r arg amode
return $ addr_code `appOL` arg_code arg `appOL` code
where
-- Code for the operation
op_code :: Reg -- Destination reg
-> Reg -- Register containing argument
-> AddrMode -- Address of location to mutate
-> NatM (OrdList Instr)
op_code dst_r arg amode = case amop of
-- In the common case where dst_r is a virtual register the
-- final move should go away, because it's the last use of arg
-- and the first use of dst_r.
AMO_Add -> return $ toOL [ LOCK (XADD format (OpReg arg) (OpAddr amode))
, MOV format (OpReg arg) (OpReg dst_r)
]
AMO_Sub -> return $ toOL [ NEGI format (OpReg arg)
, LOCK (XADD format (OpReg arg) (OpAddr amode))
, MOV format (OpReg arg) (OpReg dst_r)
]
AMO_And -> cmpxchg_code (\ src dst -> unitOL $ AND format src dst)
AMO_Nand -> cmpxchg_code (\ src dst -> toOL [ AND format src dst
, NOT format dst
])
AMO_Or -> cmpxchg_code (\ src dst -> unitOL $ OR format src dst)
AMO_Xor -> cmpxchg_code (\ src dst -> unitOL $ XOR format src dst)
where
-- Simulate operation that lacks a dedicated instruction using
-- cmpxchg.
cmpxchg_code :: (Operand -> Operand -> OrdList Instr)
-> NatM (OrdList Instr)
cmpxchg_code instrs = do
lbl <- getBlockIdNat
tmp <- getNewRegNat format
--Record inserted blocks
addImmediateSuccessorNat bid lbl
updateCfgNat (addWeightEdge lbl lbl 0)
return $ toOL
[ MOV format (OpAddr amode) (OpReg eax)
, JXX ALWAYS lbl
, NEWBLOCK lbl
-- Keep old value so we can return it:
, MOV format (OpReg eax) (OpReg dst_r)
, MOV format (OpReg eax) (OpReg tmp)
]
`appOL` instrs (OpReg arg) (OpReg tmp) `appOL` toOL
[ LOCK (CMPXCHG format (OpReg tmp) (OpAddr amode))
, JXX NE lbl
]
format = intFormat width
genCCall dflags _ (PrimTarget (MO_AtomicRead width)) [dst] [addr] _ = do
load_code <- intLoadCode (MOV (intFormat width)) addr
let platform = targetPlatform dflags
use_sse2 <- sse2Enabled
return (load_code (getRegisterReg platform use_sse2 (CmmLocal dst)))
genCCall _ _ (PrimTarget (MO_AtomicWrite width)) [] [addr, val] _ = do
code <- assignMem_IntCode (intFormat width) addr val
return $ code `snocOL` MFENCE
genCCall dflags is32Bit (PrimTarget (MO_Cmpxchg width)) [dst] [addr, old, new] _ = do
-- On x86 we don't have enough registers to use cmpxchg with a
-- complicated addressing mode, so on that architecture we
-- pre-compute the address first.
Amode amode addr_code <- getSimpleAmode dflags is32Bit addr
newval <- getNewRegNat format
newval_code <- getAnyReg new
oldval <- getNewRegNat format
oldval_code <- getAnyReg old
use_sse2 <- sse2Enabled
let platform = targetPlatform dflags
dst_r = getRegisterReg platform use_sse2 (CmmLocal dst)
code = toOL
[ MOV format (OpReg oldval) (OpReg eax)
, LOCK (CMPXCHG format (OpReg newval) (OpAddr amode))
, MOV format (OpReg eax) (OpReg dst_r)
]
return $ addr_code `appOL` newval_code newval `appOL` oldval_code oldval
`appOL` code
where
format = intFormat width
genCCall _ is32Bit target dest_regs args bid = do
dflags <- getDynFlags
let platform = targetPlatform dflags
sse2 = isSse2Enabled dflags
case (target, dest_regs) of
-- void return type prim op
(PrimTarget op, []) ->
outOfLineCmmOp bid op Nothing args
-- we only cope with a single result for foreign calls
(PrimTarget op, [r])
| sse2 -> case op of
MO_F32_Fabs -> case args of
[x] -> sse2FabsCode W32 x
_ -> panic "genCCall: Wrong number of arguments for fabs"
MO_F64_Fabs -> case args of
[x] -> sse2FabsCode W64 x
_ -> panic "genCCall: Wrong number of arguments for fabs"
MO_F32_Sqrt -> actuallyInlineSSE2Op (\fmt r -> SQRT fmt (OpReg r)) FF32 args
MO_F64_Sqrt -> actuallyInlineSSE2Op (\fmt r -> SQRT fmt (OpReg r)) FF64 args
_other_op -> outOfLineCmmOp bid op (Just r) args
| otherwise -> do
l1 <- getNewLabelNat
l2 <- getNewLabelNat
if sse2
then outOfLineCmmOp bid op (Just r) args
else case op of
MO_F32_Sqrt -> actuallyInlineFloatOp GSQRT FF32 args
MO_F64_Sqrt -> actuallyInlineFloatOp GSQRT FF64 args
MO_F32_Sin -> actuallyInlineFloatOp (\s -> GSIN s l1 l2) FF32 args
MO_F64_Sin -> actuallyInlineFloatOp (\s -> GSIN s l1 l2) FF64 args
MO_F32_Cos -> actuallyInlineFloatOp (\s -> GCOS s l1 l2) FF32 args
MO_F64_Cos -> actuallyInlineFloatOp (\s -> GCOS s l1 l2) FF64 args
MO_F32_Tan -> actuallyInlineFloatOp (\s -> GTAN s l1 l2) FF32 args
MO_F64_Tan -> actuallyInlineFloatOp (\s -> GTAN s l1 l2) FF64 args
_other_op -> outOfLineCmmOp bid op (Just r) args
where
actuallyInlineFloatOp = actuallyInlineFloatOp' False
actuallyInlineSSE2Op = actuallyInlineFloatOp' True
actuallyInlineFloatOp' usesSSE instr format [x]
= do res <- trivialUFCode format (instr format) x
any <- anyReg res
return (any (getRegisterReg platform usesSSE (CmmLocal r)))
actuallyInlineFloatOp' _ _ _ args
= panic $ "genCCall.actuallyInlineFloatOp': bad number of arguments! ("
++ show (length args) ++ ")"
sse2FabsCode :: Width -> CmmExpr -> NatM InstrBlock
sse2FabsCode w x = do
let fmt = floatFormat w
x_code <- getAnyReg x
let
const | FF32 <- fmt = CmmInt 0x7fffffff W32
| otherwise = CmmInt 0x7fffffffffffffff W64
Amode amode amode_code <- memConstant (widthInBytes w) const
tmp <- getNewRegNat fmt
let
code dst = x_code dst `appOL` amode_code `appOL` toOL [
MOV fmt (OpAddr amode) (OpReg tmp),
AND fmt (OpReg tmp) (OpReg dst)
]
return $ code (getRegisterReg platform True (CmmLocal r))
(PrimTarget (MO_S_QuotRem width), _) -> divOp1 platform True width dest_regs args
(PrimTarget (MO_U_QuotRem width), _) -> divOp1 platform False width dest_regs args
(PrimTarget (MO_U_QuotRem2 width), _) -> divOp2 platform False width dest_regs args
(PrimTarget (MO_Add2 width), [res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do hCode <- getAnyReg (CmmLit (CmmInt 0 width))
let format = intFormat width
lCode <- anyReg =<< trivialCode width (ADD_CC format)
(Just (ADD_CC format)) arg_x arg_y
let reg_l = getRegisterReg platform True (CmmLocal res_l)
reg_h = getRegisterReg platform True (CmmLocal res_h)
code = hCode reg_h `appOL`
lCode reg_l `snocOL`
ADC format (OpImm (ImmInteger 0)) (OpReg reg_h)
return code
_ -> panic "genCCall: Wrong number of arguments/results for add2"
(PrimTarget (MO_AddWordC width), [res_r, res_c]) ->
addSubIntC platform ADD_CC (const Nothing) CARRY width res_r res_c args
(PrimTarget (MO_SubWordC width), [res_r, res_c]) ->
addSubIntC platform SUB_CC (const Nothing) CARRY width res_r res_c args
(PrimTarget (MO_AddIntC width), [res_r, res_c]) ->
addSubIntC platform ADD_CC (Just . ADD_CC) OFLO width res_r res_c args
(PrimTarget (MO_SubIntC width), [res_r, res_c]) ->
addSubIntC platform SUB_CC (const Nothing) OFLO width res_r res_c args
(PrimTarget (MO_U_Mul2 width), [res_h, res_l]) ->
case args of
[arg_x, arg_y] ->
do (y_reg, y_code) <- getRegOrMem arg_y
x_code <- getAnyReg arg_x
let format = intFormat width
reg_h = getRegisterReg platform True (CmmLocal res_h)
reg_l = getRegisterReg platform True (CmmLocal res_l)
code = y_code `appOL`
x_code rax `appOL`
toOL [MUL2 format y_reg,
MOV format (OpReg rdx) (OpReg reg_h),
MOV format (OpReg rax) (OpReg reg_l)]
return code
_ -> panic "genCCall: Wrong number of arguments/results for mul2"
_ -> if is32Bit
then genCCall32' dflags target dest_regs args
else genCCall64' dflags target dest_regs args
where divOp1 platform signed width results [arg_x, arg_y]
= divOp platform signed width results Nothing arg_x arg_y
divOp1 _ _ _ _ _
= panic "genCCall: Wrong number of arguments for divOp1"
divOp2 platform signed width results [arg_x_high, arg_x_low, arg_y]
= divOp platform signed width results (Just arg_x_high) arg_x_low arg_y
divOp2 _ _ _ _ _
= panic "genCCall: Wrong number of arguments for divOp2"
-- See Note [DIV/IDIV for bytes]
divOp platform signed W8 [res_q, res_r] m_arg_x_high arg_x_low arg_y =
let widen | signed = MO_SS_Conv W8 W16
| otherwise = MO_UU_Conv W8 W16
arg_x_low_16 = CmmMachOp widen [arg_x_low]
arg_y_16 = CmmMachOp widen [arg_y]
m_arg_x_high_16 = (\p -> CmmMachOp widen [p]) <$> m_arg_x_high
in divOp
platform signed W16 [res_q, res_r]
m_arg_x_high_16 arg_x_low_16 arg_y_16
divOp platform signed width [res_q, res_r]
m_arg_x_high arg_x_low arg_y
= do let format = intFormat width
reg_q = getRegisterReg platform True (CmmLocal res_q)
reg_r = getRegisterReg platform True (CmmLocal res_r)
widen | signed = CLTD format
| otherwise = XOR format (OpReg rdx) (OpReg rdx)
instr | signed = IDIV
| otherwise = DIV
(y_reg, y_code) <- getRegOrMem arg_y
x_low_code <- getAnyReg arg_x_low
x_high_code <- case m_arg_x_high of
Just arg_x_high ->
getAnyReg arg_x_high
Nothing ->
return $ const $ unitOL widen
return $ y_code `appOL`
x_low_code rax `appOL`
x_high_code rdx `appOL`
toOL [instr format y_reg,
MOV format (OpReg rax) (OpReg reg_q),
MOV format (OpReg rdx) (OpReg reg_r)]
divOp _ _ _ _ _ _ _
= panic "genCCall: Wrong number of results for divOp"
addSubIntC platform instr mrevinstr cond width
res_r res_c [arg_x, arg_y]
= do let format = intFormat width
rCode <- anyReg =<< trivialCode width (instr format)
(mrevinstr format) arg_x arg_y
reg_tmp <- getNewRegNat II8
let reg_c = getRegisterReg platform True (CmmLocal res_c)
reg_r = getRegisterReg platform True (CmmLocal res_r)
code = rCode reg_r `snocOL`
SETCC cond (OpReg reg_tmp) `snocOL`
MOVZxL II8 (OpReg reg_tmp) (OpReg reg_c)
return code
addSubIntC _ _ _ _ _ _ _ _
= panic "genCCall: Wrong number of arguments/results for addSubIntC"
-- Note [DIV/IDIV for bytes]
--
-- IDIV reminder:
-- Size Dividend Divisor Quotient Remainder
-- byte %ax r/m8 %al %ah
-- word %dx:%ax r/m16 %ax %dx
-- dword %edx:%eax r/m32 %eax %edx
-- qword %rdx:%rax r/m64 %rax %rdx
--
-- We do a special case for the byte division because the current
-- codegen doesn't deal well with accessing %ah register (also,
-- accessing %ah in 64-bit mode is complicated because it cannot be an
-- operand of many instructions). So we just widen operands to 16 bits
-- and get the results from %al, %dl. This is not optimal, but a few
-- register moves are probably not a huge deal when doing division.
genCCall32' :: DynFlags
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall32' dflags target dest_regs args = do
let
prom_args = map (maybePromoteCArg dflags W32) args
-- Align stack to 16n for calls, assuming a starting stack
-- alignment of 16n - word_size on procedure entry. Which we
-- maintiain. See Note [rts/StgCRun.c : Stack Alignment on X86]
sizes = map (arg_size_bytes . cmmExprType dflags) (reverse args)
raw_arg_size = sum sizes + wORD_SIZE dflags
arg_pad_size = (roundTo 16 $ raw_arg_size) - raw_arg_size
tot_arg_size = raw_arg_size + arg_pad_size - wORD_SIZE dflags
delta0 <- getDeltaNat
setDeltaNat (delta0 - arg_pad_size)
use_sse2 <- sse2Enabled
push_codes <- mapM (push_arg use_sse2) (reverse prom_args)
delta <- getDeltaNat
MASSERT(delta == delta0 - tot_arg_size)
-- deal with static vs dynamic call targets
(callinsns,cconv) <-
case target of
ForeignTarget (CmmLit (CmmLabel lbl)) conv
-> -- ToDo: stdcall arg sizes
return (unitOL (CALL (Left fn_imm) []), conv)
where fn_imm = ImmCLbl lbl
ForeignTarget expr conv
-> do { (dyn_r, dyn_c) <- getSomeReg expr
; ASSERT( isWord32 (cmmExprType dflags expr) )
return (dyn_c `snocOL` CALL (Right dyn_r) [], conv) }
PrimTarget _
-> panic $ "genCCall: Can't handle PrimTarget call type here, error "
++ "probably because too many return values."
let push_code
| arg_pad_size /= 0
= toOL [SUB II32 (OpImm (ImmInt arg_pad_size)) (OpReg esp),
DELTA (delta0 - arg_pad_size)]
`appOL` concatOL push_codes
| otherwise
= concatOL push_codes
-- Deallocate parameters after call for ccall;
-- but not for stdcall (callee does it)
--
-- We have to pop any stack padding we added
-- even if we are doing stdcall, though (#5052)
pop_size
| ForeignConvention StdCallConv _ _ _ <- cconv = arg_pad_size
| otherwise = tot_arg_size
call = callinsns `appOL`
toOL (
(if pop_size==0 then [] else
[ADD II32 (OpImm (ImmInt pop_size)) (OpReg esp)])
++
[DELTA delta0]
)
setDeltaNat delta0
dflags <- getDynFlags
let platform = targetPlatform dflags
let
-- assign the results, if necessary
assign_code [] = nilOL
assign_code [dest]
| isFloatType ty =
if use_sse2
then let tmp_amode = AddrBaseIndex (EABaseReg esp)
EAIndexNone
(ImmInt 0)
fmt = floatFormat w
in toOL [ SUB II32 (OpImm (ImmInt b)) (OpReg esp),
DELTA (delta0 - b),
GST fmt fake0 tmp_amode,
MOV fmt (OpAddr tmp_amode) (OpReg r_dest),
ADD II32 (OpImm (ImmInt b)) (OpReg esp),
DELTA delta0]
else unitOL (GMOV fake0 r_dest)
| isWord64 ty = toOL [MOV II32 (OpReg eax) (OpReg r_dest),
MOV II32 (OpReg edx) (OpReg r_dest_hi)]
| otherwise = unitOL (MOV (intFormat w)
(OpReg eax)
(OpReg r_dest))
where
ty = localRegType dest
w = typeWidth ty
b = widthInBytes w
r_dest_hi = getHiVRegFromLo r_dest
r_dest = getRegisterReg platform use_sse2 (CmmLocal dest)
assign_code many = pprPanic "genCCall.assign_code - too many return values:" (ppr many)
return (push_code `appOL`
call `appOL`
assign_code dest_regs)
where
-- If the size is smaller than the word, we widen things (see maybePromoteCArg)
arg_size_bytes :: CmmType -> Int
arg_size_bytes ty = max (widthInBytes (typeWidth ty)) (widthInBytes (wordWidth dflags))
roundTo a x | x `mod` a == 0 = x
| otherwise = x + a - (x `mod` a)
push_arg :: Bool -> CmmActual {-current argument-}
-> NatM InstrBlock -- code
push_arg use_sse2 arg -- we don't need the hints on x86
| isWord64 arg_ty = do
ChildCode64 code r_lo <- iselExpr64 arg
delta <- getDeltaNat
setDeltaNat (delta - 8)
let r_hi = getHiVRegFromLo r_lo
return ( code `appOL`
toOL [PUSH II32 (OpReg r_hi), DELTA (delta - 4),
PUSH II32 (OpReg r_lo), DELTA (delta - 8),
DELTA (delta-8)]
)
| isFloatType arg_ty = do
(reg, code) <- getSomeReg arg
delta <- getDeltaNat
setDeltaNat (delta-size)
return (code `appOL`
toOL [SUB II32 (OpImm (ImmInt size)) (OpReg esp),
DELTA (delta-size),
let addr = AddrBaseIndex (EABaseReg esp)
EAIndexNone
(ImmInt 0)
format = floatFormat (typeWidth arg_ty)
in
if use_sse2
then MOV format (OpReg reg) (OpAddr addr)
else GST format reg addr
]
)
| otherwise = do
-- Arguments can be smaller than 32-bit, but we still use @PUSH
-- II32@ - the usual calling conventions expect integers to be
-- 4-byte aligned.
ASSERT((typeWidth arg_ty) <= W32) return ()
(operand, code) <- getOperand arg
delta <- getDeltaNat
setDeltaNat (delta-size)
return (code `snocOL`
PUSH II32 operand `snocOL`
DELTA (delta-size))
where
arg_ty = cmmExprType dflags arg
size = arg_size_bytes arg_ty -- Byte size
genCCall64' :: DynFlags
-> ForeignTarget -- function to call
-> [CmmFormal] -- where to put the result
-> [CmmActual] -- arguments (of mixed type)
-> NatM InstrBlock
genCCall64' dflags target dest_regs args = do
-- load up the register arguments
let prom_args = map (maybePromoteCArg dflags W32) args
(stack_args, int_regs_used, fp_regs_used, load_args_code, assign_args_code)
<-
if platformOS platform == OSMinGW32
then load_args_win prom_args [] [] (allArgRegs platform) nilOL
else do
(stack_args, aregs, fregs, load_args_code, assign_args_code)
<- load_args prom_args (allIntArgRegs platform)
(allFPArgRegs platform)
nilOL nilOL
let used_regs rs as = reverse (drop (length rs) (reverse as))
fregs_used = used_regs fregs (allFPArgRegs platform)
aregs_used = used_regs aregs (allIntArgRegs platform)
return (stack_args, aregs_used, fregs_used, load_args_code
, assign_args_code)
let
arg_regs_used = int_regs_used ++ fp_regs_used
arg_regs = [eax] ++ arg_regs_used
-- for annotating the call instruction with
sse_regs = length fp_regs_used
arg_stack_slots = if platformOS platform == OSMinGW32
then length stack_args + length (allArgRegs platform)
else length stack_args
tot_arg_size = arg_size * arg_stack_slots
-- Align stack to 16n for calls, assuming a starting stack
-- alignment of 16n - word_size on procedure entry. Which we
-- maintain. See Note [rts/StgCRun.c : Stack Alignment on X86]
(real_size, adjust_rsp) <-
if (tot_arg_size + wORD_SIZE dflags) `rem` 16 == 0
then return (tot_arg_size, nilOL)
else do -- we need to adjust...
delta <- getDeltaNat
setDeltaNat (delta - wORD_SIZE dflags)
return (tot_arg_size + wORD_SIZE dflags, toOL [
SUB II64 (OpImm (ImmInt (wORD_SIZE dflags))) (OpReg rsp),
DELTA (delta - wORD_SIZE dflags) ])
-- push the stack args, right to left
push_code <- push_args (reverse stack_args) nilOL
-- On Win64, we also have to leave stack space for the arguments
-- that we are passing in registers
lss_code <- if platformOS platform == OSMinGW32
then leaveStackSpace (length (allArgRegs platform))
else return nilOL
delta <- getDeltaNat
-- deal with static vs dynamic call targets
(callinsns,_cconv) <-
case target of
ForeignTarget (CmmLit (CmmLabel lbl)) conv
-> -- ToDo: stdcall arg sizes
return (unitOL (CALL (Left fn_imm) arg_regs), conv)
where fn_imm = ImmCLbl lbl
ForeignTarget expr conv
-> do (dyn_r, dyn_c) <- getSomeReg expr
return (dyn_c `snocOL` CALL (Right dyn_r) arg_regs, conv)
PrimTarget _
-> panic $ "genCCall: Can't handle PrimTarget call type here, error "
++ "probably because too many return values."
let
-- The x86_64 ABI requires us to set %al to the number of SSE2
-- registers that contain arguments, if the called routine
-- is a varargs function. We don't know whether it's a
-- varargs function or not, so we have to assume it is.
--
-- It's not safe to omit this assignment, even if the number
-- of SSE2 regs in use is zero. If %al is larger than 8
-- on entry to a varargs function, seg faults ensue.
assign_eax n = unitOL (MOV II32 (OpImm (ImmInt n)) (OpReg eax))
let call = callinsns `appOL`
toOL (
-- Deallocate parameters after call for ccall;
-- stdcall has callee do it, but is not supported on
-- x86_64 target (see #3336)
(if real_size==0 then [] else
[ADD (intFormat (wordWidth dflags)) (OpImm (ImmInt real_size)) (OpReg esp)])
++
[DELTA (delta + real_size)]
)
setDeltaNat (delta + real_size)
let
-- assign the results, if necessary
assign_code [] = nilOL
assign_code [dest] =
case typeWidth rep of
W32 | isFloatType rep -> unitOL (MOV (floatFormat W32)
(OpReg xmm0)
(OpReg r_dest))
W64 | isFloatType rep -> unitOL (MOV (floatFormat W64)
(OpReg xmm0)
(OpReg r_dest))
_ -> unitOL (MOV (cmmTypeFormat rep) (OpReg rax) (OpReg r_dest))
where
rep = localRegType dest
r_dest = getRegisterReg platform True (CmmLocal dest)
assign_code _many = panic "genCCall.assign_code many"
return (adjust_rsp `appOL`
push_code `appOL`
load_args_code `appOL`
assign_args_code `appOL`
lss_code `appOL`
assign_eax sse_regs `appOL`
call `appOL`
assign_code dest_regs)
where platform = targetPlatform dflags
arg_size = 8 -- always, at the mo
load_args :: [CmmExpr]
-> [Reg] -- int regs avail for args
-> [Reg] -- FP regs avail for args
-> InstrBlock -- code computing args
-> InstrBlock -- code assigning args to ABI regs
-> NatM ([CmmExpr],[Reg],[Reg],InstrBlock,InstrBlock)
-- no more regs to use
load_args args [] [] code acode =
return (args, [], [], code, acode)
-- no more args to push
load_args [] aregs fregs code acode =
return ([], aregs, fregs, code, acode)
load_args (arg : rest) aregs fregs code acode
| isFloatType arg_rep = case fregs of
[] -> push_this_arg
(r:rs) -> do
(code',acode') <- reg_this_arg r
load_args rest aregs rs code' acode'
| otherwise = case aregs of
[] -> push_this_arg
(r:rs) -> do
(code',acode') <- reg_this_arg r
load_args rest rs fregs code' acode'
where
-- put arg into the list of stack pushed args
push_this_arg = do
(args',ars,frs,code',acode')
<- load_args rest aregs fregs code acode
return (arg:args', ars, frs, code', acode')
-- pass the arg into the given register
reg_this_arg r
-- "operand" args can be directly assigned into r
| isOperand False arg = do
arg_code <- getAnyReg arg
return (code, (acode `appOL` arg_code r))
-- The last non-operand arg can be directly assigned after its
-- computation without going into a temporary register
| all (isOperand False) rest = do
arg_code <- getAnyReg arg
return (code `appOL` arg_code r,acode)
-- other args need to be computed beforehand to avoid clobbering
-- previously assigned registers used to pass parameters (see
-- #11792, #12614). They are assigned into temporary registers
-- and get assigned to proper call ABI registers after they all
-- have been computed.
| otherwise = do
arg_code <- getAnyReg arg
tmp <- getNewRegNat arg_fmt
let
code' = code `appOL` arg_code tmp
acode' = acode `snocOL` reg2reg arg_fmt tmp r
return (code',acode')
arg_rep = cmmExprType dflags arg
arg_fmt = cmmTypeFormat arg_rep
load_args_win :: [CmmExpr]
-> [Reg] -- used int regs
-> [Reg] -- used FP regs
-> [(Reg, Reg)] -- (int, FP) regs avail for args
-> InstrBlock
-> NatM ([CmmExpr],[Reg],[Reg],InstrBlock,InstrBlock)
load_args_win args usedInt usedFP [] code
= return (args, usedInt, usedFP, code, nilOL)
-- no more regs to use
load_args_win [] usedInt usedFP _ code
= return ([], usedInt, usedFP, code, nilOL)
-- no more args to push
load_args_win (arg : rest) usedInt usedFP
((ireg, freg) : regs) code
| isFloatType arg_rep = do
arg_code <- getAnyReg arg
load_args_win rest (ireg : usedInt) (freg : usedFP) regs
(code `appOL`
arg_code freg `snocOL`
-- If we are calling a varargs function
-- then we need to define ireg as well
-- as freg
MOV II64 (OpReg freg) (OpReg ireg))
| otherwise = do
arg_code <- getAnyReg arg
load_args_win rest (ireg : usedInt) usedFP regs
(code `appOL` arg_code ireg)
where
arg_rep = cmmExprType dflags arg
push_args [] code = return code
push_args (arg:rest) code
| isFloatType arg_rep = do
(arg_reg, arg_code) <- getSomeReg arg
delta <- getDeltaNat
setDeltaNat (delta-arg_size)
let code' = code `appOL` arg_code `appOL` toOL [
SUB (intFormat (wordWidth dflags)) (OpImm (ImmInt arg_size)) (OpReg rsp),
DELTA (delta-arg_size),
MOV (floatFormat width) (OpReg arg_reg) (OpAddr (spRel dflags 0))]
push_args rest code'
| otherwise = do
-- Arguments can be smaller than 64-bit, but we still use @PUSH
-- II64@ - the usual calling conventions expect integers to be
-- 8-byte aligned.
ASSERT(width <= W64) return ()
(arg_op, arg_code) <- getOperand arg
delta <- getDeltaNat
setDeltaNat (delta-arg_size)
let code' = code `appOL` arg_code `appOL` toOL [
PUSH II64 arg_op,
DELTA (delta-arg_size)]
push_args rest code'
where
arg_rep = cmmExprType dflags arg
width = typeWidth arg_rep
leaveStackSpace n = do
delta <- getDeltaNat
setDeltaNat (delta - n * arg_size)
return $ toOL [
SUB II64 (OpImm (ImmInt (n * wORD_SIZE dflags))) (OpReg rsp),
DELTA (delta - n * arg_size)]
maybePromoteCArg :: DynFlags -> Width -> CmmExpr -> CmmExpr
maybePromoteCArg dflags wto arg
| wfrom < wto = CmmMachOp (MO_UU_Conv wfrom wto) [arg]
| otherwise = arg
where
wfrom = cmmExprWidth dflags arg
outOfLineCmmOp :: BlockId -> CallishMachOp -> Maybe CmmFormal -> [CmmActual]
-> NatM InstrBlock
outOfLineCmmOp bid mop res args
= do
dflags <- getDynFlags
targetExpr <- cmmMakeDynamicReference dflags CallReference lbl
let target = ForeignTarget targetExpr
(ForeignConvention CCallConv [] [] CmmMayReturn)
stmtToInstrs bid (CmmUnsafeForeignCall target (catMaybes [res]) args)
where
-- Assume we can call these functions directly, and that they're not in a dynamic library.
-- TODO: Why is this ok? Under linux this code will be in libm.so
-- Is it because they're really implemented as a primitive instruction by the assembler?? -- BL 2009/12/31
lbl = mkForeignLabel fn Nothing ForeignLabelInThisPackage IsFunction
fn = case mop of
MO_F32_Sqrt -> fsLit "sqrtf"
MO_F32_Fabs -> fsLit "fabsf"
MO_F32_Sin -> fsLit "sinf"
MO_F32_Cos -> fsLit "cosf"
MO_F32_Tan -> fsLit "tanf"
MO_F32_Exp -> fsLit "expf"
MO_F32_Log -> fsLit "logf"
MO_F32_Asin -> fsLit "asinf"
MO_F32_Acos -> fsLit "acosf"
MO_F32_Atan -> fsLit "atanf"
MO_F32_Sinh -> fsLit "sinhf"
MO_F32_Cosh -> fsLit "coshf"
MO_F32_Tanh -> fsLit "tanhf"
MO_F32_Pwr -> fsLit "powf"
MO_F32_Asinh -> fsLit "asinhf"
MO_F32_Acosh -> fsLit "acoshf"
MO_F32_Atanh -> fsLit "atanhf"
MO_F64_Sqrt -> fsLit "sqrt"
MO_F64_Fabs -> fsLit "fabs"
MO_F64_Sin -> fsLit "sin"
MO_F64_Cos -> fsLit "cos"
MO_F64_Tan -> fsLit "tan"
MO_F64_Exp -> fsLit "exp"
MO_F64_Log -> fsLit "log"
MO_F64_Asin -> fsLit "asin"
MO_F64_Acos -> fsLit "acos"
MO_F64_Atan -> fsLit "atan"
MO_F64_Sinh -> fsLit "sinh"
MO_F64_Cosh -> fsLit "cosh"
MO_F64_Tanh -> fsLit "tanh"
MO_F64_Pwr -> fsLit "pow"
MO_F64_Asinh -> fsLit "asinh"
MO_F64_Acosh -> fsLit "acosh"
MO_F64_Atanh -> fsLit "atanh"
MO_Memcpy _ -> fsLit "memcpy"
MO_Memset _ -> fsLit "memset"
MO_Memmove _ -> fsLit "memmove"
MO_Memcmp _ -> fsLit "memcmp"
MO_PopCnt _ -> fsLit "popcnt"
MO_BSwap _ -> fsLit "bswap"
MO_Clz w -> fsLit $ clzLabel w
MO_Ctz _ -> unsupported
MO_Pdep w -> fsLit $ pdepLabel w
MO_Pext w -> fsLit $ pextLabel w
MO_AtomicRMW _ _ -> fsLit "atomicrmw"
MO_AtomicRead _ -> fsLit "atomicread"
MO_AtomicWrite _ -> fsLit "atomicwrite"
MO_Cmpxchg _ -> fsLit "cmpxchg"
MO_UF_Conv _ -> unsupported
MO_S_QuotRem {} -> unsupported
MO_U_QuotRem {} -> unsupported
MO_U_QuotRem2 {} -> unsupported
MO_Add2 {} -> unsupported
MO_AddIntC {} -> unsupported
MO_SubIntC {} -> unsupported
MO_AddWordC {} -> unsupported
MO_SubWordC {} -> unsupported
MO_U_Mul2 {} -> unsupported
MO_WriteBarrier -> unsupported
MO_Touch -> unsupported
(MO_Prefetch_Data _ ) -> unsupported
unsupported = panic ("outOfLineCmmOp: " ++ show mop
++ " not supported here")
-- -----------------------------------------------------------------------------
-- Generating a table-branch
genSwitch :: DynFlags -> CmmExpr -> SwitchTargets -> NatM InstrBlock
genSwitch dflags expr targets
| positionIndependent dflags
= do
(reg,e_code) <- getNonClobberedReg (cmmOffset dflags expr offset)
-- getNonClobberedReg because it needs to survive across t_code
lbl <- getNewLabelNat
dflags <- getDynFlags
let is32bit = target32Bit (targetPlatform dflags)
os = platformOS (targetPlatform dflags)
-- Might want to use .rodata.<function we're in> instead, but as
-- long as it's something unique it'll work out since the
-- references to the jump table are in the appropriate section.
rosection = case os of
-- on Mac OS X/x86_64, put the jump table in the text section to
-- work around a limitation of the linker.
-- ld64 is unable to handle the relocations for
-- .quad L1 - L0
-- if L0 is not preceded by a non-anonymous label in its section.
OSDarwin | not is32bit -> Section Text lbl
_ -> Section ReadOnlyData lbl
dynRef <- cmmMakeDynamicReference dflags DataReference lbl
(tableReg,t_code) <- getSomeReg $ dynRef
let op = OpAddr (AddrBaseIndex (EABaseReg tableReg)
(EAIndex reg (wORD_SIZE dflags)) (ImmInt 0))
offsetReg <- getNewRegNat (intFormat (wordWidth dflags))
return $ if is32bit || os == OSDarwin
then e_code `appOL` t_code `appOL` toOL [
ADD (intFormat (wordWidth dflags)) op (OpReg tableReg),
JMP_TBL (OpReg tableReg) ids rosection lbl
]
else -- HACK: On x86_64 binutils<2.17 is only able to generate
-- PC32 relocations, hence we only get 32-bit offsets in
-- the jump table. As these offsets are always negative
-- we need to properly sign extend them to 64-bit. This
-- hack should be removed in conjunction with the hack in
-- PprMach.hs/pprDataItem once binutils 2.17 is standard.
e_code `appOL` t_code `appOL` toOL [
MOVSxL II32 op (OpReg offsetReg),
ADD (intFormat (wordWidth dflags))
(OpReg offsetReg)
(OpReg tableReg),
JMP_TBL (OpReg tableReg) ids rosection lbl
]
| otherwise
= do
(reg,e_code) <- getSomeReg (cmmOffset dflags expr offset)
lbl <- getNewLabelNat
let op = OpAddr (AddrBaseIndex EABaseNone (EAIndex reg (wORD_SIZE dflags)) (ImmCLbl lbl))
code = e_code `appOL` toOL [
JMP_TBL op ids (Section ReadOnlyData lbl) lbl
]
return code
where
(offset, blockIds) = switchTargetsToTable targets
ids = map (fmap DestBlockId) blockIds
generateJumpTableForInstr :: DynFlags -> Instr -> Maybe (NatCmmDecl (Alignment, CmmStatics) Instr)
generateJumpTableForInstr dflags (JMP_TBL _ ids section lbl)
= let getBlockId (DestBlockId id) = id
getBlockId _ = panic "Non-Label target in Jump Table"
blockIds = map (fmap getBlockId) ids
in Just (createJumpTable dflags blockIds section lbl)
generateJumpTableForInstr _ _ = Nothing
createJumpTable :: DynFlags -> [Maybe BlockId] -> Section -> CLabel
-> GenCmmDecl (Alignment, CmmStatics) h g
createJumpTable dflags ids section lbl
= let jumpTable
| positionIndependent dflags =
let ww = wordWidth dflags
jumpTableEntryRel Nothing
= CmmStaticLit (CmmInt 0 ww)
jumpTableEntryRel (Just blockid)
= CmmStaticLit (CmmLabelDiffOff blockLabel lbl 0 ww)
where blockLabel = blockLbl blockid
in map jumpTableEntryRel ids
| otherwise = map (jumpTableEntry dflags) ids
in CmmData section (1, Statics lbl jumpTable)
extractUnwindPoints :: [Instr] -> [UnwindPoint]
extractUnwindPoints instrs =
[ UnwindPoint lbl unwinds | UNWIND lbl unwinds <- instrs]
-- -----------------------------------------------------------------------------
-- 'condIntReg' and 'condFltReg': condition codes into registers
-- Turn those condition codes into integers now (when they appear on
-- the right hand side of an assignment).
--
-- (If applicable) Do not fill the delay slots here; you will confuse the
-- register allocator.
condIntReg :: Cond -> CmmExpr -> CmmExpr -> NatM Register
condIntReg cond x y = do
CondCode _ cond cond_code <- condIntCode cond x y
tmp <- getNewRegNat II8
let
code dst = cond_code `appOL` toOL [
SETCC cond (OpReg tmp),
MOVZxL II8 (OpReg tmp) (OpReg dst)
]
return (Any II32 code)
-----------------------------------------------------------
--- Note [SSE Parity Checks] ---
-----------------------------------------------------------
-- We have to worry about unordered operands (eg. comparisons
-- against NaN). If the operands are unordered, the comparison
-- sets the parity flag, carry flag and zero flag.
-- All comparisons are supposed to return false for unordered
-- operands except for !=, which returns true.
--
-- Optimisation: we don't have to test the parity flag if we
-- know the test has already excluded the unordered case: eg >
-- and >= test for a zero carry flag, which can only occur for
-- ordered operands.
--
-- By reversing comparisons we can avoid testing the parity
-- for < and <= as well. If any of the arguments is an NaN we
-- return false either way. If both arguments are valid then
-- x <= y <-> y >= x holds. So it's safe to swap these.
--
-- We invert the condition inside getRegister'and getCondCode
-- which should cover all invertable cases.
-- All other functions translating FP comparisons to assembly
-- use these to two generate the comparison code.
--
-- As an example consider a simple check:
--
-- func :: Float -> Float -> Int
-- func x y = if x < y then 1 else 0
--
-- Which in Cmm gives the floating point comparison.
--
-- if (%MO_F_Lt_W32(F1, F2)) goto c2gg; else goto c2gf;
--
-- We used to compile this to an assembly code block like this:
-- _c2gh:
-- ucomiss %xmm2,%xmm1
-- jp _c2gf
-- jb _c2gg
-- jmp _c2gf
--
-- Where we have to introduce an explicit
-- check for unordered results (using jmp parity):
--
-- We can avoid this by exchanging the arguments and inverting the direction
-- of the comparison. This results in the sequence of:
--
-- ucomiss %xmm1,%xmm2
-- ja _c2g2
-- jmp _c2g1
--
-- Removing the jump reduces the pressure on the branch predidiction system
-- and plays better with the uOP cache.
condFltReg :: Bool -> Cond -> CmmExpr -> CmmExpr -> NatM Register
condFltReg is32Bit cond x y = if_sse2 condFltReg_sse2 condFltReg_x87
where
condFltReg_x87 = do
CondCode _ cond cond_code <- condFltCode cond x y
tmp <- getNewRegNat II8
let
code dst = cond_code `appOL` toOL [
SETCC cond (OpReg tmp),
MOVZxL II8 (OpReg tmp) (OpReg dst)
]
return (Any II32 code)
condFltReg_sse2 = do
CondCode _ cond cond_code <- condFltCode cond x y
tmp1 <- getNewRegNat (archWordFormat is32Bit)
tmp2 <- getNewRegNat (archWordFormat is32Bit)
let -- See Note [SSE Parity Checks]
code dst =
cond_code `appOL`
(case cond of
NE -> or_unordered dst
GU -> plain_test dst
GEU -> plain_test dst
-- Use ASSERT so we don't break releases if these creep in.
LTT -> ASSERT2(False, ppr "Should have been turned into >")
and_ordered dst
LE -> ASSERT2(False, ppr "Should have been turned into >=")
and_ordered dst
_ -> and_ordered dst)
plain_test dst = toOL [
SETCC cond (OpReg tmp1),
MOVZxL II8 (OpReg tmp1) (OpReg dst)
]
or_unordered dst = toOL [
SETCC cond (OpReg tmp1),
SETCC PARITY (OpReg tmp2),
OR II8 (OpReg tmp1) (OpReg tmp2),
MOVZxL II8 (OpReg tmp2) (OpReg dst)
]
and_ordered dst = toOL [
SETCC cond (OpReg tmp1),
SETCC NOTPARITY (OpReg tmp2),
AND II8 (OpReg tmp1) (OpReg tmp2),
MOVZxL II8 (OpReg tmp2) (OpReg dst)
]
return (Any II32 code)
-- -----------------------------------------------------------------------------
-- 'trivial*Code': deal with trivial instructions
-- Trivial (dyadic: 'trivialCode', floating-point: 'trivialFCode',
-- unary: 'trivialUCode', unary fl-pt:'trivialUFCode') instructions.
-- Only look for constants on the right hand side, because that's
-- where the generic optimizer will have put them.
-- Similarly, for unary instructions, we don't have to worry about
-- matching an StInt as the argument, because genericOpt will already
-- have handled the constant-folding.
{-
The Rules of the Game are:
* You cannot assume anything about the destination register dst;
it may be anything, including a fixed reg.
* You may compute an operand into a fixed reg, but you may not
subsequently change the contents of that fixed reg. If you
want to do so, first copy the value either to a temporary
or into dst. You are free to modify dst even if it happens
to be a fixed reg -- that's not your problem.
* You cannot assume that a fixed reg will stay live over an
arbitrary computation. The same applies to the dst reg.
* Temporary regs obtained from getNewRegNat are distinct from
each other and from all other regs, and stay live over
arbitrary computations.
--------------------
SDM's version of The Rules:
* If getRegister returns Any, that means it can generate correct
code which places the result in any register, period. Even if that
register happens to be read during the computation.
Corollary #1: this means that if you are generating code for an
operation with two arbitrary operands, you cannot assign the result
of the first operand into the destination register before computing
the second operand. The second operand might require the old value
of the destination register.
Corollary #2: A function might be able to generate more efficient
code if it knows the destination register is a new temporary (and
therefore not read by any of the sub-computations).
* If getRegister returns Any, then the code it generates may modify only:
(a) fresh temporaries
(b) the destination register
(c) known registers (eg. %ecx is used by shifts)
In particular, it may *not* modify global registers, unless the global
register happens to be the destination register.
-}
trivialCode :: Width -> (Operand -> Operand -> Instr)
-> Maybe (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCode width instr m a b
= do is32Bit <- is32BitPlatform
trivialCode' is32Bit width instr m a b
trivialCode' :: Bool -> Width -> (Operand -> Operand -> Instr)
-> Maybe (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialCode' is32Bit width _ (Just revinstr) (CmmLit lit_a) b
| is32BitLit is32Bit lit_a = do
b_code <- getAnyReg b
let
code dst
= b_code dst `snocOL`
revinstr (OpImm (litToImm lit_a)) (OpReg dst)
return (Any (intFormat width) code)
trivialCode' _ width instr _ a b
= genTrivialCode (intFormat width) instr a b
-- This is re-used for floating pt instructions too.
genTrivialCode :: Format -> (Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
genTrivialCode rep instr a b = do
(b_op, b_code) <- getNonClobberedOperand b
a_code <- getAnyReg a
tmp <- getNewRegNat rep
let
-- We want the value of b to stay alive across the computation of a.
-- But, we want to calculate a straight into the destination register,
-- because the instruction only has two operands (dst := dst `op` src).
-- The troublesome case is when the result of b is in the same register
-- as the destination reg. In this case, we have to save b in a
-- new temporary across the computation of a.
code dst
| dst `regClashesWithOp` b_op =
b_code `appOL`
unitOL (MOV rep b_op (OpReg tmp)) `appOL`
a_code dst `snocOL`
instr (OpReg tmp) (OpReg dst)
| otherwise =
b_code `appOL`
a_code dst `snocOL`
instr b_op (OpReg dst)
return (Any rep code)
regClashesWithOp :: Reg -> Operand -> Bool
reg `regClashesWithOp` OpReg reg2 = reg == reg2
reg `regClashesWithOp` OpAddr amode = any (==reg) (addrModeRegs amode)
_ `regClashesWithOp` _ = False
-----------
trivialUCode :: Format -> (Operand -> Instr)
-> CmmExpr -> NatM Register
trivialUCode rep instr x = do
x_code <- getAnyReg x
let
code dst =
x_code dst `snocOL`
instr (OpReg dst)
return (Any rep code)
-----------
trivialFCode_x87 :: (Format -> Reg -> Reg -> Reg -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialFCode_x87 instr x y = do
(x_reg, x_code) <- getNonClobberedReg x -- these work for float regs too
(y_reg, y_code) <- getSomeReg y
let
format = FF80 -- always, on x87
code dst =
x_code `appOL`
y_code `snocOL`
instr format x_reg y_reg dst
return (Any format code)
trivialFCode_sse2 :: Width -> (Format -> Operand -> Operand -> Instr)
-> CmmExpr -> CmmExpr -> NatM Register
trivialFCode_sse2 pk instr x y
= genTrivialCode format (instr format) x y
where format = floatFormat pk
trivialUFCode :: Format -> (Reg -> Reg -> Instr) -> CmmExpr -> NatM Register
trivialUFCode format instr x = do
(x_reg, x_code) <- getSomeReg x
let
code dst =
x_code `snocOL`
instr x_reg dst
return (Any format code)
--------------------------------------------------------------------------------
coerceInt2FP :: Width -> Width -> CmmExpr -> NatM Register
coerceInt2FP from to x = if_sse2 coerce_sse2 coerce_x87
where
coerce_x87 = do
(x_reg, x_code) <- getSomeReg x
let
opc = case to of W32 -> GITOF; W64 -> GITOD;
n -> panic $ "coerceInt2FP.x87: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc x_reg dst
-- ToDo: works for non-II32 reps?
return (Any FF80 code)
coerce_sse2 = do
(x_op, x_code) <- getOperand x -- ToDo: could be a safe operand
let
opc = case to of W32 -> CVTSI2SS; W64 -> CVTSI2SD
n -> panic $ "coerceInt2FP.sse: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc (intFormat from) x_op dst
return (Any (floatFormat to) code)
-- works even if the destination rep is <II32
--------------------------------------------------------------------------------
coerceFP2Int :: Width -> Width -> CmmExpr -> NatM Register
coerceFP2Int from to x = if_sse2 coerceFP2Int_sse2 coerceFP2Int_x87
where
coerceFP2Int_x87 = do
(x_reg, x_code) <- getSomeReg x
let
opc = case from of W32 -> GFTOI; W64 -> GDTOI
n -> panic $ "coerceFP2Int.x87: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc x_reg dst
-- ToDo: works for non-II32 reps?
return (Any (intFormat to) code)
coerceFP2Int_sse2 = do
(x_op, x_code) <- getOperand x -- ToDo: could be a safe operand
let
opc = case from of W32 -> CVTTSS2SIQ; W64 -> CVTTSD2SIQ;
n -> panic $ "coerceFP2Init.sse: unhandled width ("
++ show n ++ ")"
code dst = x_code `snocOL` opc (intFormat to) x_op dst
return (Any (intFormat to) code)
-- works even if the destination rep is <II32
--------------------------------------------------------------------------------
coerceFP2FP :: Width -> CmmExpr -> NatM Register
coerceFP2FP to x = do
use_sse2 <- sse2Enabled
(x_reg, x_code) <- getSomeReg x
let
opc | use_sse2 = case to of W32 -> CVTSD2SS; W64 -> CVTSS2SD;
n -> panic $ "coerceFP2FP: unhandled width ("
++ show n ++ ")"
| otherwise = GDTOF
code dst = x_code `snocOL` opc x_reg dst
return (Any (if use_sse2 then floatFormat to else FF80) code)
--------------------------------------------------------------------------------
sse2NegCode :: Width -> CmmExpr -> NatM Register
sse2NegCode w x = do
let fmt = floatFormat w
x_code <- getAnyReg x
-- This is how gcc does it, so it can't be that bad:
let
const = case fmt of
FF32 -> CmmInt 0x80000000 W32
FF64 -> CmmInt 0x8000000000000000 W64
x@II8 -> wrongFmt x
x@II16 -> wrongFmt x
x@II32 -> wrongFmt x
x@II64 -> wrongFmt x
x@FF80 -> wrongFmt x
where
wrongFmt x = panic $ "sse2NegCode: " ++ show x
Amode amode amode_code <- memConstant (widthInBytes w) const
tmp <- getNewRegNat fmt
let
code dst = x_code dst `appOL` amode_code `appOL` toOL [
MOV fmt (OpAddr amode) (OpReg tmp),
XOR fmt (OpReg tmp) (OpReg dst)
]
--
return (Any fmt code)
isVecExpr :: CmmExpr -> Bool
isVecExpr (CmmMachOp (MO_V_Insert {}) _) = True
isVecExpr (CmmMachOp (MO_V_Extract {}) _) = True
isVecExpr (CmmMachOp (MO_V_Add {}) _) = True
isVecExpr (CmmMachOp (MO_V_Sub {}) _) = True
isVecExpr (CmmMachOp (MO_V_Mul {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Quot {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Rem {}) _) = True
isVecExpr (CmmMachOp (MO_VS_Neg {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Insert {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Extract {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Add {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Sub {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Mul {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Quot {}) _) = True
isVecExpr (CmmMachOp (MO_VF_Neg {}) _) = True
isVecExpr (CmmMachOp _ [e]) = isVecExpr e
isVecExpr _ = False
needLlvm :: NatM a
needLlvm =
sorry $ unlines ["The native code generator does not support vector"
,"instructions. Please use -fllvm."]
-- | This works on the invariant that all jumps in the given blocks are required.
-- Starting from there we try to make a few more jumps redundant by reordering
-- them.
invertCondBranches :: CFG -> LabelMap a -> [NatBasicBlock Instr]
-> [NatBasicBlock Instr]
invertCondBranches cfg keep bs =
--trace "Foo" $
invert bs
where
invert :: [NatBasicBlock Instr] -> [NatBasicBlock Instr]
invert ((BasicBlock lbl1 ins@(_:_:_xs)):b2@(BasicBlock lbl2 _):bs)
| --pprTrace "Block" (ppr lbl1) True,
(jmp1,jmp2) <- last2 ins
, JXX cond1 target1 <- jmp1
, target1 == lbl2
--, pprTrace "CutChance" (ppr b1) True
, JXX ALWAYS target2 <- jmp2
-- We have enough information to check if we can perform the inversion
-- TODO: We could also check for the last asm instruction which sets
-- status flags instead. Which I suspect is worse in terms of compiler
-- performance, but might be applicable to more cases
, Just edgeInfo1 <- getEdgeInfo lbl1 target1 cfg
, Just edgeInfo2 <- getEdgeInfo lbl1 target2 cfg
-- Both jumps come from the same cmm statement
, transitionSource edgeInfo1 == transitionSource edgeInfo2
, (CmmSource cmmCondBranch) <- transitionSource edgeInfo1
--Int comparisons are invertable
, CmmCondBranch (CmmMachOp op _args) _ _ _ <- cmmCondBranch
, Just _ <- maybeIntComparison op
, Just invCond <- maybeInvertCond cond1
--Swap the last two jumps, invert the conditional jumps condition.
= let jumps =
case () of
-- We are free the eliminate the jmp. So we do so.
_ | not (mapMember target1 keep)
-> [JXX invCond target2]
-- If the conditional target is unlikely we put the other
-- target at the front.
| edgeWeight edgeInfo2 > edgeWeight edgeInfo1
-> [JXX invCond target2, JXX ALWAYS target1]
-- Keep things as-is otherwise
| otherwise
-> [jmp1, jmp2]
in --pprTrace "Cutable" (ppr [jmp1,jmp2] <+> text "=>" <+> ppr jumps) $
(BasicBlock lbl1
(dropTail 2 ins ++ jumps))
: invert (b2:bs)
invert (b:bs) = b : invert bs
invert [] = []