rts/ProfHeap.c (906 lines of code) (raw):
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2003
*
* Support for heap profiling
*
* --------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "Capability.h"
#include "RtsFlags.h"
#include "RtsUtils.h"
#include "Profiling.h"
#include "ProfHeap.h"
#include "Stats.h"
#include "Hash.h"
#include "RetainerProfile.h"
#include "LdvProfile.h"
#include "Arena.h"
#include "Printer.h"
#include "Trace.h"
#include "sm/GCThread.h"
#include <fs_rts.h>
#include <string.h>
/* -----------------------------------------------------------------------------
* era stores the current time period. It is the same as the
* number of censuses that have been performed.
*
* RESTRICTION:
* era must be no longer than LDV_SHIFT (15 or 30) bits.
* Invariants:
* era is initialized to 1 in initHeapProfiling().
*
* max_era is initialized to 2^LDV_SHIFT in initHeapProfiling().
* When era reaches max_era, the profiling stops because a closure can
* store only up to (max_era - 1) as its creation or last use time.
* -------------------------------------------------------------------------- */
unsigned int era;
static uint32_t max_era;
/* -----------------------------------------------------------------------------
* Counters
*
* For most heap profiles each closure identity gets a simple count
* of live words in the heap at each census. However, if we're
* selecting by biography, then we have to keep the various
* lag/drag/void counters for each identity.
* -------------------------------------------------------------------------- */
typedef struct _counter {
const void *identity;
union {
ssize_t resid;
struct {
// Total sizes of:
ssize_t prim; // 'inherently used' closures
ssize_t not_used; // 'never used' closures
ssize_t used; // 'used at least once' closures
ssize_t void_total; // 'destroyed without being used' closures
ssize_t drag_total; // 'used at least once and waiting to die'
} ldv;
} c;
struct _counter *next;
} counter;
STATIC_INLINE void
initLDVCtr( counter *ctr )
{
ctr->c.ldv.prim = 0;
ctr->c.ldv.not_used = 0;
ctr->c.ldv.used = 0;
ctr->c.ldv.void_total = 0;
ctr->c.ldv.drag_total = 0;
}
typedef struct {
double time; // the time in MUT time when the census is made
HashTable * hash;
counter * ctrs;
Arena * arena;
// for LDV profiling, when just displaying by LDV
ssize_t prim;
ssize_t not_used;
ssize_t used;
ssize_t void_total;
ssize_t drag_total;
} Census;
static Census *censuses = NULL;
static uint32_t n_censuses = 0;
#if defined(PROFILING)
static void aggregateCensusInfo( void );
#endif
static void dumpCensus( Census *census );
static bool closureSatisfiesConstraints( const StgClosure* p );
/* ----------------------------------------------------------------------------
* Find the "closure identity", which is a unique pointer representing
* the band to which this closure's heap space is attributed in the
* heap profile.
* ------------------------------------------------------------------------- */
static const void *
closureIdentity( const StgClosure *p )
{
switch (RtsFlags.ProfFlags.doHeapProfile) {
#if defined(PROFILING)
case HEAP_BY_CCS:
return p->header.prof.ccs;
case HEAP_BY_MOD:
return p->header.prof.ccs->cc->module;
case HEAP_BY_DESCR:
return GET_PROF_DESC(get_itbl(p));
case HEAP_BY_TYPE:
return GET_PROF_TYPE(get_itbl(p));
case HEAP_BY_RETAINER:
// AFAIK, the only closures in the heap which might not have a
// valid retainer set are DEAD_WEAK closures.
if (isRetainerSetFieldValid(p))
return retainerSetOf(p);
else
return NULL;
#endif
case HEAP_BY_CLOSURE_TYPE:
{
const StgInfoTable *info;
info = get_itbl(p);
switch (info->type) {
case CONSTR:
case CONSTR_1_0:
case CONSTR_0_1:
case CONSTR_2_0:
case CONSTR_1_1:
case CONSTR_0_2:
case CONSTR_NOCAF:
return GET_CON_DESC(itbl_to_con_itbl(info));
default:
return closure_type_names[info->type];
}
}
default:
barf("closureIdentity");
}
}
/* --------------------------------------------------------------------------
* Profiling type predicates
* ----------------------------------------------------------------------- */
#if defined(PROFILING)
STATIC_INLINE bool
doingLDVProfiling( void )
{
return (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV
|| RtsFlags.ProfFlags.bioSelector != NULL);
}
bool
doingRetainerProfiling( void )
{
return (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_RETAINER
|| RtsFlags.ProfFlags.retainerSelector != NULL);
}
#endif /* PROFILING */
// Processes a closure 'c' being destroyed whose size is 'size'.
// Make sure that LDV_recordDead() is not invoked on 'inherently used' closures
// such as TSO; they should not be involved in computing dragNew or voidNew.
//
// Even though era is checked in both LdvCensusForDead() and
// LdvCensusKillAll(), we still need to make sure that era is > 0 because
// LDV_recordDead() may be called from elsewhere in the runtime system. E.g.,
// when a thunk is replaced by an indirection object.
#if defined(PROFILING)
void
LDV_recordDead( const StgClosure *c, uint32_t size )
{
const void *id;
uint32_t t;
counter *ctr;
if (era > 0 && closureSatisfiesConstraints(c)) {
size -= sizeofW(StgProfHeader);
ASSERT(LDVW(c) != 0);
if ((LDVW((c)) & LDV_STATE_MASK) == LDV_STATE_CREATE) {
t = (LDVW((c)) & LDV_CREATE_MASK) >> LDV_SHIFT;
if (t < era) {
if (RtsFlags.ProfFlags.bioSelector == NULL) {
censuses[t].void_total += size;
censuses[era].void_total -= size;
ASSERT(censuses[t].void_total < censuses[t].not_used);
} else {
id = closureIdentity(c);
ctr = lookupHashTable(censuses[t].hash, (StgWord)id);
if (ctr == NULL)
barf("LDV_recordDead: Failed to find counter for closure %p", c);
ctr->c.ldv.void_total += size;
ctr = lookupHashTable(censuses[era].hash, (StgWord)id);
if (ctr == NULL) {
ctr = arenaAlloc(censuses[era].arena, sizeof(counter));
initLDVCtr(ctr);
insertHashTable(censuses[era].hash, (StgWord)id, ctr);
ctr->identity = id;
ctr->next = censuses[era].ctrs;
censuses[era].ctrs = ctr;
}
ctr->c.ldv.void_total -= size;
}
}
} else {
t = LDVW((c)) & LDV_LAST_MASK;
if (t + 1 < era) {
if (RtsFlags.ProfFlags.bioSelector == NULL) {
censuses[t+1].drag_total += size;
censuses[era].drag_total -= size;
} else {
const void *id;
id = closureIdentity(c);
ctr = lookupHashTable(censuses[t+1].hash, (StgWord)id);
ASSERT( ctr != NULL );
ctr->c.ldv.drag_total += size;
ctr = lookupHashTable(censuses[era].hash, (StgWord)id);
if (ctr == NULL) {
ctr = arenaAlloc(censuses[era].arena, sizeof(counter));
initLDVCtr(ctr);
insertHashTable(censuses[era].hash, (StgWord)id, ctr);
ctr->identity = id;
ctr->next = censuses[era].ctrs;
censuses[era].ctrs = ctr;
}
ctr->c.ldv.drag_total -= size;
}
}
}
}
}
#endif
/* --------------------------------------------------------------------------
* Initialize censuses[era];
* ----------------------------------------------------------------------- */
STATIC_INLINE void
initEra(Census *census)
{
census->hash = allocHashTable();
census->ctrs = NULL;
census->arena = newArena();
census->not_used = 0;
census->used = 0;
census->prim = 0;
census->void_total = 0;
census->drag_total = 0;
}
STATIC_INLINE void
freeEra(Census *census)
{
arenaFree(census->arena);
freeHashTable(census->hash, NULL);
}
/* --------------------------------------------------------------------------
* Increases era by 1 and initialize census[era].
* Reallocates gi[] and increases its size if needed.
* ----------------------------------------------------------------------- */
static void
nextEra( void )
{
#if defined(PROFILING)
if (doingLDVProfiling()) {
era++;
if (era == max_era) {
errorBelch("Maximum number of censuses reached.");
if (rtsConfig.rts_opts_suggestions == true) {
if (rtsConfig.rts_opts_enabled == RtsOptsAll) {
errorBelch("Use `+RTS -i' to reduce censuses.");
} else {
errorBelch("Relink with -rtsopts and "
"use `+RTS -i' to reduce censuses.");
}
}
stg_exit(EXIT_FAILURE);
}
if (era == n_censuses) {
n_censuses *= 2;
censuses = stgReallocBytes(censuses, sizeof(Census) * n_censuses,
"nextEra");
}
}
#endif /* PROFILING */
initEra( &censuses[era] );
}
/* ----------------------------------------------------------------------------
* Heap profiling by info table
* ------------------------------------------------------------------------- */
#if !defined(PROFILING)
FILE *hp_file;
static char *hp_filename;
void freeProfiling (void)
{
}
void initProfiling (void)
{
char *prog;
prog = stgMallocBytes(strlen(prog_name) + 1, "initProfiling2");
strcpy(prog, prog_name);
#if defined(mingw32_HOST_OS)
// on Windows, drop the .exe suffix if there is one
{
char *suff;
suff = strrchr(prog,'.');
if (suff != NULL && !strcmp(suff,".exe")) {
*suff = '\0';
}
}
#endif
if (RtsFlags.ProfFlags.doHeapProfile) {
/* Initialise the log file name */
hp_filename = stgMallocBytes(strlen(prog) + 6, "hpFileName");
sprintf(hp_filename, "%s.hp", prog);
/* open the log file */
if ((hp_file = __rts_fopen(hp_filename, "w")) == NULL) {
debugBelch("Can't open profiling report file %s\n",
hp_filename);
RtsFlags.ProfFlags.doHeapProfile = 0;
stgFree(prog);
return;
}
}
stgFree(prog);
initHeapProfiling();
}
void endProfiling( void )
{
endHeapProfiling();
}
#endif /* !PROFILING */
static void
printEscapedString(const char* string)
{
for (const char* p = string; *p != '\0'; ++p) {
if (*p == '\"') {
// Escape every " as ""
fputc('"', hp_file);
}
fputc(*p, hp_file);
}
}
static void
printSample(bool beginSample, StgDouble sampleValue)
{
fprintf(hp_file, "%s %f\n",
(beginSample ? "BEGIN_SAMPLE" : "END_SAMPLE"),
sampleValue);
if (!beginSample) {
fflush(hp_file);
}
}
static void
dumpCostCentresToEventLog(void)
{
#if defined(PROFILING)
CostCentre *cc, *next;
for (cc = CC_LIST; cc != NULL; cc = next) {
next = cc->link;
traceHeapProfCostCentre(cc->ccID, cc->label, cc->module,
cc->srcloc, cc->is_caf);
}
#endif
}
/* --------------------------------------------------------------------------
* Initialize the heap profilier
* ----------------------------------------------------------------------- */
uint32_t
initHeapProfiling(void)
{
if (! RtsFlags.ProfFlags.doHeapProfile) {
return 0;
}
#if defined(PROFILING)
if (doingLDVProfiling() && doingRetainerProfiling()) {
errorBelch("cannot mix -hb and -hr");
stg_exit(EXIT_FAILURE);
}
#if defined(THREADED_RTS)
// See Trac #12019.
if (doingLDVProfiling() && RtsFlags.ParFlags.nCapabilities > 1) {
errorBelch("-hb cannot be used with multiple capabilities");
stg_exit(EXIT_FAILURE);
}
#endif
#endif
// we only count eras if we're doing LDV profiling. Otherwise era
// is fixed at zero.
#if defined(PROFILING)
if (doingLDVProfiling()) {
era = 1;
} else
#endif
{
era = 0;
}
// max_era = 2^LDV_SHIFT
max_era = 1 << LDV_SHIFT;
n_censuses = 32;
censuses = stgMallocBytes(sizeof(Census) * n_censuses, "initHeapProfiling");
initEra( &censuses[era] );
/* initProfilingLogFile(); */
fprintf(hp_file, "JOB \"");
printEscapedString(prog_name);
#if defined(PROFILING)
for (int i = 1; i < prog_argc; ++i) {
fputc(' ', hp_file);
printEscapedString(prog_argv[i]);
}
fprintf(hp_file, " +RTS");
for (int i = 0; i < rts_argc; ++i) {
fputc(' ', hp_file);
printEscapedString(rts_argv[i]);
}
#endif /* PROFILING */
fprintf(hp_file, "\"\n" );
fprintf(hp_file, "DATE \"%s\"\n", time_str());
fprintf(hp_file, "SAMPLE_UNIT \"seconds\"\n");
fprintf(hp_file, "VALUE_UNIT \"bytes\"\n");
printSample(true, 0);
printSample(false, 0);
#if defined(PROFILING)
if (doingRetainerProfiling()) {
initRetainerProfiling();
}
#endif
traceHeapProfBegin(0);
dumpCostCentresToEventLog();
return 0;
}
void
endHeapProfiling(void)
{
StgDouble seconds;
if (! RtsFlags.ProfFlags.doHeapProfile) {
return;
}
#if defined(PROFILING)
if (doingRetainerProfiling()) {
endRetainerProfiling();
}
#endif
#if defined(PROFILING)
if (doingLDVProfiling()) {
uint32_t t;
LdvCensusKillAll();
aggregateCensusInfo();
for (t = 1; t < era; t++) {
dumpCensus( &censuses[t] );
}
}
#endif
#if defined(PROFILING)
if (doingLDVProfiling()) {
uint32_t t;
if (RtsFlags.ProfFlags.bioSelector != NULL) {
for (t = 1; t <= era; t++) {
freeEra( &censuses[t] );
}
} else {
freeEra( &censuses[era] );
}
} else {
freeEra( &censuses[0] );
}
#else
freeEra( &censuses[0] );
#endif
stgFree(censuses);
seconds = mut_user_time();
printSample(true, seconds);
printSample(false, seconds);
fclose(hp_file);
}
#if defined(PROFILING)
static size_t
buf_append(char *p, const char *q, char *end)
{
int m;
for (m = 0; p < end; p++, q++, m++) {
*p = *q;
if (*q == '\0') { break; }
}
return m;
}
static void
fprint_ccs(FILE *fp, CostCentreStack *ccs, uint32_t max_length)
{
char buf[max_length+1], *p, *buf_end;
// MAIN on its own gets printed as "MAIN", otherwise we ignore MAIN.
if (ccs == CCS_MAIN) {
fprintf(fp, "MAIN");
return;
}
fprintf(fp, "(%" FMT_Int ")", ccs->ccsID);
p = buf;
buf_end = buf + max_length + 1;
// keep printing components of the stack until we run out of space
// in the buffer. If we run out of space, end with "...".
for (; ccs != NULL && ccs != CCS_MAIN; ccs = ccs->prevStack) {
// CAF cost centres print as M.CAF, but we leave the module
// name out of all the others to save space.
if (!strcmp(ccs->cc->label,"CAF")) {
p += buf_append(p, ccs->cc->module, buf_end);
p += buf_append(p, ".CAF", buf_end);
} else {
p += buf_append(p, ccs->cc->label, buf_end);
if (ccs->prevStack != NULL && ccs->prevStack != CCS_MAIN) {
p += buf_append(p, "/", buf_end);
}
}
if (p >= buf_end) {
sprintf(buf+max_length-4, "...");
break;
}
}
fprintf(fp, "%s", buf);
}
bool
strMatchesSelector( const char* str, const char* sel )
{
const char* p;
// debugBelch("str_matches_selector %s %s\n", str, sel);
while (1) {
// Compare str against wherever we've got to in sel.
p = str;
while (*p != '\0' && *sel != ',' && *sel != '\0' && *p == *sel) {
p++; sel++;
}
// Match if all of str used and have reached the end of a sel fragment.
if (*p == '\0' && (*sel == ',' || *sel == '\0'))
return true;
// No match. Advance sel to the start of the next elem.
while (*sel != ',' && *sel != '\0') sel++;
if (*sel == ',') sel++;
/* Run out of sel ?? */
if (*sel == '\0') return false;
}
}
#endif /* PROFILING */
/* -----------------------------------------------------------------------------
* Figure out whether a closure should be counted in this census, by
* testing against all the specified constraints.
* -------------------------------------------------------------------------- */
static bool
closureSatisfiesConstraints( const StgClosure* p )
{
#if !defined(PROFILING)
(void)p; /* keep gcc -Wall happy */
return true;
#else
bool b;
// The CCS has a selected field to indicate whether this closure is
// deselected by not being mentioned in the module, CC, or CCS
// selectors.
if (!p->header.prof.ccs->selected) {
return false;
}
if (RtsFlags.ProfFlags.descrSelector) {
b = strMatchesSelector( (GET_PROF_DESC(get_itbl((StgClosure *)p))),
RtsFlags.ProfFlags.descrSelector );
if (!b) return false;
}
if (RtsFlags.ProfFlags.typeSelector) {
b = strMatchesSelector( (GET_PROF_TYPE(get_itbl((StgClosure *)p))),
RtsFlags.ProfFlags.typeSelector );
if (!b) return false;
}
if (RtsFlags.ProfFlags.retainerSelector) {
RetainerSet *rs;
uint32_t i;
// We must check that the retainer set is valid here. One
// reason it might not be valid is if this closure is a
// a newly deceased weak pointer (i.e. a DEAD_WEAK), since
// these aren't reached by the retainer profiler's traversal.
if (isRetainerSetFieldValid((StgClosure *)p)) {
rs = retainerSetOf((StgClosure *)p);
if (rs != NULL) {
for (i = 0; i < rs->num; i++) {
b = strMatchesSelector( rs->element[i]->cc->label,
RtsFlags.ProfFlags.retainerSelector );
if (b) return true;
}
}
}
return false;
}
return true;
#endif /* PROFILING */
}
/* -----------------------------------------------------------------------------
* Aggregate the heap census info for biographical profiling
* -------------------------------------------------------------------------- */
#if defined(PROFILING)
static void
aggregateCensusInfo( void )
{
HashTable *acc;
uint32_t t;
counter *c, *d, *ctrs;
Arena *arena;
if (!doingLDVProfiling()) return;
// Aggregate the LDV counters when displaying by biography.
if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) {
long void_total, drag_total;
// Now we compute void_total and drag_total for each census
// After the program has finished, the void_total field of
// each census contains the count of words that were *created*
// in this era and were eventually void. Conversely, if a
// void closure was destroyed in this era, it will be
// represented by a negative count of words in void_total.
//
// To get the count of live words that are void at each
// census, just propagate the void_total count forwards:
void_total = 0;
drag_total = 0;
for (t = 1; t < era; t++) { // note: start at 1, not 0
void_total += censuses[t].void_total;
drag_total += censuses[t].drag_total;
censuses[t].void_total = void_total;
censuses[t].drag_total = drag_total;
ASSERT( censuses[t].void_total <= censuses[t].not_used );
// should be true because: void_total is the count of
// live words that are void at this census, which *must*
// be less than the number of live words that have not
// been used yet.
ASSERT( censuses[t].drag_total <= censuses[t].used );
// similar reasoning as above.
}
return;
}
// otherwise... we're doing a heap profile that is restricted to
// some combination of lag, drag, void or use. We've kept all the
// census info for all censuses so far, but we still need to
// aggregate the counters forwards.
arena = newArena();
acc = allocHashTable();
ctrs = NULL;
for (t = 1; t < era; t++) {
// first look through all the counters we're aggregating
for (c = ctrs; c != NULL; c = c->next) {
// if one of the totals is non-zero, then this closure
// type must be present in the heap at this census time...
d = lookupHashTable(censuses[t].hash, (StgWord)c->identity);
if (d == NULL) {
// if this closure identity isn't present in the
// census for this time period, then our running
// totals *must* be zero.
ASSERT(c->c.ldv.void_total == 0 && c->c.ldv.drag_total == 0);
// debugCCS(c->identity);
// debugBelch(" census=%d void_total=%d drag_total=%d\n",
// t, c->c.ldv.void_total, c->c.ldv.drag_total);
} else {
d->c.ldv.void_total += c->c.ldv.void_total;
d->c.ldv.drag_total += c->c.ldv.drag_total;
c->c.ldv.void_total = d->c.ldv.void_total;
c->c.ldv.drag_total = d->c.ldv.drag_total;
ASSERT( c->c.ldv.void_total >= 0 );
ASSERT( c->c.ldv.drag_total >= 0 );
}
}
// now look through the counters in this census to find new ones
for (c = censuses[t].ctrs; c != NULL; c = c->next) {
d = lookupHashTable(acc, (StgWord)c->identity);
if (d == NULL) {
d = arenaAlloc( arena, sizeof(counter) );
initLDVCtr(d);
insertHashTable( acc, (StgWord)c->identity, d );
d->identity = c->identity;
d->next = ctrs;
ctrs = d;
d->c.ldv.void_total = c->c.ldv.void_total;
d->c.ldv.drag_total = c->c.ldv.drag_total;
}
ASSERT( c->c.ldv.void_total >= 0 );
ASSERT( c->c.ldv.drag_total >= 0 );
}
}
freeHashTable(acc, NULL);
arenaFree(arena);
}
#endif
/* -----------------------------------------------------------------------------
* Print out the results of a heap census.
* -------------------------------------------------------------------------- */
static void
dumpCensus( Census *census )
{
counter *ctr;
ssize_t count;
printSample(true, census->time);
traceHeapProfSampleBegin(era);
#if defined(PROFILING)
/* change typecast to uint64_t to remove
* print formatting warning. See #12636 */
if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) {
fprintf(hp_file, "VOID\t%" FMT_Word64 "\n",
(uint64_t)(census->void_total *
sizeof(W_)));
fprintf(hp_file, "LAG\t%" FMT_Word64 "\n",
(uint64_t)((census->not_used - census->void_total) *
sizeof(W_)));
fprintf(hp_file, "USE\t%" FMT_Word64 "\n",
(uint64_t)((census->used - census->drag_total) *
sizeof(W_)));
fprintf(hp_file, "INHERENT_USE\t%" FMT_Word64 "\n",
(uint64_t)(census->prim * sizeof(W_)));
fprintf(hp_file, "DRAG\t%" FMT_Word64 "\n",
(uint64_t)(census->drag_total * sizeof(W_)));
printSample(false, census->time);
return;
}
#endif
for (ctr = census->ctrs; ctr != NULL; ctr = ctr->next) {
#if defined(PROFILING)
if (RtsFlags.ProfFlags.bioSelector != NULL) {
count = 0;
if (strMatchesSelector("lag", RtsFlags.ProfFlags.bioSelector))
count += ctr->c.ldv.not_used - ctr->c.ldv.void_total;
if (strMatchesSelector("drag", RtsFlags.ProfFlags.bioSelector))
count += ctr->c.ldv.drag_total;
if (strMatchesSelector("void", RtsFlags.ProfFlags.bioSelector))
count += ctr->c.ldv.void_total;
if (strMatchesSelector("use", RtsFlags.ProfFlags.bioSelector))
count += ctr->c.ldv.used - ctr->c.ldv.drag_total;
} else
#endif
{
count = ctr->c.resid;
}
ASSERT( count >= 0 );
if (count == 0) continue;
switch (RtsFlags.ProfFlags.doHeapProfile) {
case HEAP_BY_CLOSURE_TYPE:
fprintf(hp_file, "%s", (char *)ctr->identity);
traceHeapProfSampleString(0, (char *)ctr->identity,
count * sizeof(W_));
break;
}
#if defined(PROFILING)
switch (RtsFlags.ProfFlags.doHeapProfile) {
case HEAP_BY_CCS:
fprint_ccs(hp_file, (CostCentreStack *)ctr->identity,
RtsFlags.ProfFlags.ccsLength);
traceHeapProfSampleCostCentre(0, (CostCentreStack *)ctr->identity,
count * sizeof(W_));
break;
case HEAP_BY_MOD:
case HEAP_BY_DESCR:
case HEAP_BY_TYPE:
fprintf(hp_file, "%s", (char *)ctr->identity);
traceHeapProfSampleString(0, (char *)ctr->identity,
count * sizeof(W_));
break;
case HEAP_BY_RETAINER:
{
RetainerSet *rs = (RetainerSet *)ctr->identity;
// it might be the distinguished retainer set rs_MANY:
if (rs == &rs_MANY) {
fprintf(hp_file, "MANY");
break;
}
// Mark this retainer set by negating its id, because it
// has appeared in at least one census. We print the
// values of all such retainer sets into the log file at
// the end. A retainer set may exist but not feature in
// any censuses if it arose as the intermediate retainer
// set for some closure during retainer set calculation.
if (rs->id > 0)
rs->id = -(rs->id);
// report in the unit of bytes: * sizeof(StgWord)
printRetainerSetShort(hp_file, rs, RtsFlags.ProfFlags.ccsLength);
break;
}
default:
barf("dumpCensus; doHeapProfile");
}
#endif
fprintf(hp_file, "\t%" FMT_Word "\n", (W_)count * sizeof(W_));
}
printSample(false, census->time);
}
static void heapProfObject(Census *census, StgClosure *p, size_t size,
bool prim
#if !defined(PROFILING)
STG_UNUSED
#endif
)
{
const void *identity;
size_t real_size;
counter *ctr;
identity = NULL;
#if defined(PROFILING)
// subtract the profiling overhead
real_size = size - sizeofW(StgProfHeader);
#else
real_size = size;
#endif
if (closureSatisfiesConstraints((StgClosure*)p)) {
#if defined(PROFILING)
if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) {
if (prim)
census->prim += real_size;
else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE)
census->not_used += real_size;
else
census->used += real_size;
} else
#endif
{
identity = closureIdentity((StgClosure *)p);
if (identity != NULL) {
ctr = lookupHashTable(census->hash, (StgWord)identity);
if (ctr != NULL) {
#if defined(PROFILING)
if (RtsFlags.ProfFlags.bioSelector != NULL) {
if (prim)
ctr->c.ldv.prim += real_size;
else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE)
ctr->c.ldv.not_used += real_size;
else
ctr->c.ldv.used += real_size;
} else
#endif
{
ctr->c.resid += real_size;
}
} else {
ctr = arenaAlloc( census->arena, sizeof(counter) );
initLDVCtr(ctr);
insertHashTable( census->hash, (StgWord)identity, ctr );
ctr->identity = identity;
ctr->next = census->ctrs;
census->ctrs = ctr;
#if defined(PROFILING)
if (RtsFlags.ProfFlags.bioSelector != NULL) {
if (prim)
ctr->c.ldv.prim = real_size;
else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE)
ctr->c.ldv.not_used = real_size;
else
ctr->c.ldv.used = real_size;
} else
#endif
{
ctr->c.resid = real_size;
}
}
}
}
}
}
// Compact objects require special handling code because they
// are not stored consecutively in memory (rather, each object
// is a list of objects), and that would break the while loop
// below. But we know that each block holds at most one object
// so we don't need the loop.
//
// See Note [Compact Normal Forms] for details.
static void
heapCensusCompactList(Census *census, bdescr *bd)
{
for (; bd != NULL; bd = bd->link) {
StgCompactNFDataBlock *block = (StgCompactNFDataBlock*)bd->start;
StgCompactNFData *str = block->owner;
heapProfObject(census, (StgClosure*)str,
compact_nfdata_full_sizeW(str), true);
}
}
/* -----------------------------------------------------------------------------
* Code to perform a heap census.
* -------------------------------------------------------------------------- */
static void
heapCensusChain( Census *census, bdescr *bd )
{
StgPtr p;
const StgInfoTable *info;
size_t size;
bool prim;
for (; bd != NULL; bd = bd->link) {
// HACK: pretend a pinned block is just one big ARR_WORDS
// owned by CCS_PINNED. These blocks can be full of holes due
// to alignment constraints so we can't traverse the memory
// and do a proper census.
if (bd->flags & BF_PINNED) {
StgClosure arr;
SET_HDR(&arr, &stg_ARR_WORDS_info, CCS_PINNED);
heapProfObject(census, &arr, bd->blocks * BLOCK_SIZE_W, true);
continue;
}
p = bd->start;
// When we shrink a large ARR_WORDS, we do not adjust the free pointer
// of the associated block descriptor, thus introducing slop at the end
// of the object. This slop remains after GC, violating the assumption
// of the loop below that all slop has been eliminated (#11627).
// Consequently, we handle large ARR_WORDS objects as a special case.
if (bd->flags & BF_LARGE
&& get_itbl((StgClosure *)p)->type == ARR_WORDS) {
size = arr_words_sizeW((StgArrBytes *)p);
prim = true;
heapProfObject(census, (StgClosure *)p, size, prim);
continue;
}
while (p < bd->free) {
info = get_itbl((const StgClosure *)p);
prim = false;
switch (info->type) {
case THUNK:
size = thunk_sizeW_fromITBL(info);
break;
case THUNK_1_1:
case THUNK_0_2:
case THUNK_2_0:
size = sizeofW(StgThunkHeader) + 2;
break;
case THUNK_1_0:
case THUNK_0_1:
case THUNK_SELECTOR:
size = sizeofW(StgThunkHeader) + 1;
break;
case FUN:
case BLACKHOLE:
case BLOCKING_QUEUE:
case FUN_1_0:
case FUN_0_1:
case FUN_1_1:
case FUN_0_2:
case FUN_2_0:
case CONSTR:
case CONSTR_NOCAF:
case CONSTR_1_0:
case CONSTR_0_1:
case CONSTR_1_1:
case CONSTR_0_2:
case CONSTR_2_0:
size = sizeW_fromITBL(info);
break;
case IND:
// Special case/Delicate Hack: INDs don't normally
// appear, since we're doing this heap census right
// after GC. However, GarbageCollect() also does
// resurrectThreads(), which can update some
// blackholes when it calls raiseAsync() on the
// resurrected threads. So we know that any IND will
// be the size of a BLACKHOLE.
size = BLACKHOLE_sizeW();
break;
case BCO:
prim = true;
size = bco_sizeW((StgBCO *)p);
break;
case MVAR_CLEAN:
case MVAR_DIRTY:
case TVAR:
case WEAK:
case PRIM:
case MUT_PRIM:
case MUT_VAR_CLEAN:
case MUT_VAR_DIRTY:
prim = true;
size = sizeW_fromITBL(info);
break;
case AP:
size = ap_sizeW((StgAP *)p);
break;
case PAP:
size = pap_sizeW((StgPAP *)p);
break;
case AP_STACK:
size = ap_stack_sizeW((StgAP_STACK *)p);
break;
case ARR_WORDS:
prim = true;
size = arr_words_sizeW((StgArrBytes*)p);
break;
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
case MUT_ARR_PTRS_FROZEN_CLEAN:
case MUT_ARR_PTRS_FROZEN_DIRTY:
prim = true;
size = mut_arr_ptrs_sizeW((StgMutArrPtrs *)p);
break;
case SMALL_MUT_ARR_PTRS_CLEAN:
case SMALL_MUT_ARR_PTRS_DIRTY:
case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
prim = true;
size = small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs *)p);
break;
case TSO:
prim = true;
#if defined(PROFILING)
if (RtsFlags.ProfFlags.includeTSOs) {
size = sizeofW(StgTSO);
break;
} else {
// Skip this TSO and move on to the next object
p += sizeofW(StgTSO);
continue;
}
#else
size = sizeofW(StgTSO);
break;
#endif
case STACK:
prim = true;
#if defined(PROFILING)
if (RtsFlags.ProfFlags.includeTSOs) {
size = stack_sizeW((StgStack*)p);
break;
} else {
// Skip this TSO and move on to the next object
p += stack_sizeW((StgStack*)p);
continue;
}
#else
size = stack_sizeW((StgStack*)p);
break;
#endif
case TREC_CHUNK:
prim = true;
size = sizeofW(StgTRecChunk);
break;
case COMPACT_NFDATA:
barf("heapCensus, found compact object in the wrong list");
break;
default:
barf("heapCensus, unknown object: %d", info->type);
}
heapProfObject(census,(StgClosure*)p,size,prim);
p += size;
}
}
}
void heapCensus (Time t)
{
uint32_t g, n;
Census *census;
gen_workspace *ws;
census = &censuses[era];
census->time = mut_user_time_until(t);
// calculate retainer sets if necessary
#if defined(PROFILING)
if (doingRetainerProfiling()) {
retainerProfile();
}
#endif
#if defined(PROFILING)
stat_startHeapCensus();
#endif
// Traverse the heap, collecting the census info
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
heapCensusChain( census, generations[g].blocks );
// Are we interested in large objects? might be
// confusing to include the stack in a heap profile.
heapCensusChain( census, generations[g].large_objects );
heapCensusCompactList ( census, generations[g].compact_objects );
for (n = 0; n < n_capabilities; n++) {
ws = &gc_threads[n]->gens[g];
heapCensusChain(census, ws->todo_bd);
heapCensusChain(census, ws->part_list);
heapCensusChain(census, ws->scavd_list);
}
}
// dump out the census info
#if defined(PROFILING)
// We can't generate any info for LDV profiling until
// the end of the run...
if (!doingLDVProfiling())
dumpCensus( census );
#else
dumpCensus( census );
#endif
// free our storage, unless we're keeping all the census info for
// future restriction by biography.
#if defined(PROFILING)
if (RtsFlags.ProfFlags.bioSelector == NULL)
{
freeEra(census);
census->hash = NULL;
census->arena = NULL;
}
#endif
// we're into the next time period now
nextEra();
#if defined(PROFILING)
stat_endHeapCensus();
#endif
}