hphp/vixl/a64/assembler-a64.cc (1,620 lines of code) (raw):

// Copyright 2013, ARM Limited // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "hphp/vixl/a64/assembler-a64.h" #include <cmath> namespace vixl { // CPURegList utilities. CPURegister CPURegList::PopLowestIndex() { if (IsEmpty()) { return NoCPUReg; } int index = CountTrailingZeros(list_, kRegListSizeInBits); assert((1 << index) & list_); Remove(index); return CPURegister(index, size_, type_); } CPURegister CPURegList::PopHighestIndex() { assert(IsValid()); if (IsEmpty()) { return NoCPUReg; } int index = CountLeadingZeros(list_, kRegListSizeInBits); index = kRegListSizeInBits - 1 - index; assert((1 << index) & list_); Remove(index); return CPURegister(index, size_, type_); } bool CPURegList::IsValid() const { if ((type_ == CPURegister::kRegister) || (type_ == CPURegister::kFPRegister)) { bool is_valid = true; // Try to create a CPURegister for each element in the list. for (int i = 0; i < kRegListSizeInBits; i++) { if (((list_ >> i) & 1) != 0) { is_valid &= CPURegister(i, size_, type_).IsValid(); } } return is_valid; } else { return false; } } void CPURegList::RemoveCalleeSaved() { if (type() == CPURegister::kRegister) { Remove(GetCalleeSaved(RegisterSizeInBits())); } else if (type() == CPURegister::kFPRegister) { Remove(GetCalleeSavedFP(RegisterSizeInBits())); } } CPURegList CPURegList::GetCalleeSaved(unsigned size) { return CPURegList(CPURegister::kRegister, size, 19, 29); } CPURegList CPURegList::GetCalleeSavedFP(unsigned size) { return CPURegList(CPURegister::kFPRegister, size, 8, 15); } CPURegList CPURegList::GetCallerSaved(unsigned size) { // Registers x0-x18 and lr (x30) are caller-saved. CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18); list.Combine(lr); return list; } CPURegList CPURegList::GetCallerSavedFP(unsigned size) { // Registers d0-d7 and d16-d31 are caller-saved. CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7); list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31)); return list; } const CPURegList kCalleeSaved = CPURegList::GetCalleeSaved(); const CPURegList kCalleeSavedFP = CPURegList::GetCalleeSavedFP(); const CPURegList kCallerSaved = CPURegList::GetCallerSaved(); const CPURegList kCallerSavedFP = CPURegList::GetCallerSavedFP(); // Registers. #define WREG(n) w##n, const Register Register::wregisters[] = { REGISTER_CODE_LIST(WREG) }; #undef WREG #define XREG(n) x##n, const Register Register::xregisters[] = { REGISTER_CODE_LIST(XREG) }; #undef XREG #define SREG(n) s##n, const FPRegister FPRegister::sregisters[] = { REGISTER_CODE_LIST(SREG) }; #undef SREG #define DREG(n) d##n, const FPRegister FPRegister::dregisters[] = { REGISTER_CODE_LIST(DREG) }; #undef DREG MemOperand Register::operator[](const ptrdiff_t offset) const { return MemOperand { *this, offset }; } MemOperand Register::operator[](const Register& offset) const { return MemOperand { *this, offset }; } const Register& Register::WRegFromCode(unsigned code) { // This function returns the zero register when code = 31. The stack pointer // can not be returned. assert(code < kNumberOfRegisters); return wregisters[code]; } const Register& Register::XRegFromCode(unsigned code) { // This function returns the zero register when code = 31. The stack pointer // can not be returned. assert(code < kNumberOfRegisters); return xregisters[code]; } const FPRegister& FPRegister::SRegFromCode(unsigned code) { assert(code < kNumberOfFPRegisters); return sregisters[code]; } const FPRegister& FPRegister::DRegFromCode(unsigned code) { assert(code < kNumberOfFPRegisters); return dregisters[code]; } const Register& CPURegister::W() const { assert(IsValidRegister()); assert(Is64Bits()); return Register::WRegFromCode(code_); } const Register& CPURegister::X() const { assert(IsValidRegister()); assert(Is32Bits()); return Register::XRegFromCode(code_); } const FPRegister& CPURegister::S() const { assert(IsValidFPRegister()); assert(Is64Bits()); return FPRegister::SRegFromCode(code_); } const FPRegister& CPURegister::D() const { assert(IsValidFPRegister()); assert(Is32Bits()); return FPRegister::DRegFromCode(code_); } // Operand. Operand::Operand(int64_t immediate) : immediate_(immediate), reg_(NoReg), shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {} Operand::Operand(Register reg, Shift shift, unsigned shift_amount) : reg_(reg), shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { assert(reg.Is64Bits() || (shift_amount < kWRegSize)); assert(reg.Is32Bits() || (shift_amount < kXRegSize)); assert(!reg.IsSP()); } Operand::Operand(Register reg, Extend extend, unsigned shift_amount) : reg_(reg), shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { assert(reg.IsValid()); assert(shift_amount <= 4); assert(!reg.IsSP()); } bool Operand::IsImmediate() const { return reg_.Is(NoReg); } bool Operand::IsShiftedRegister() const { return reg_.IsValid() && (shift_ != NO_SHIFT); } bool Operand::IsExtendedRegister() const { return reg_.IsValid() && (extend_ != NO_EXTEND); } Operand Operand::ToExtendedRegister() const { assert(IsShiftedRegister()); assert((shift_ == LSL) && (shift_amount_ <= 4)); return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_); } // MemOperand MemOperand::MemOperand(Register base, ptrdiff_t offset, AddrMode addrmode) : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode) { assert(base.Is64Bits() && !base.IsZero()); } MemOperand::MemOperand(Register base, Register regoffset, Extend extend, unsigned shift_amount) : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { assert(base.Is64Bits() && !base.IsZero()); assert(!regoffset.IsSP()); assert((extend == UXTW) || (extend == SXTW) || (extend == SXTX)); } MemOperand::MemOperand(Register base, Register regoffset, Shift shift, unsigned shift_amount) : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { assert(base.Is64Bits() && !base.IsZero()); assert(!regoffset.IsSP()); assert(shift == LSL); } MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode) : base_(base), regoffset_(NoReg), addrmode_(addrmode) { assert(base.Is64Bits() && !base.IsZero()); if (offset.IsImmediate()) { offset_ = offset.immediate(); } else if (offset.IsShiftedRegister()) { assert(addrmode == Offset); regoffset_ = offset.reg(); shift_= offset.shift(); shift_amount_ = offset.shift_amount(); extend_ = NO_EXTEND; offset_ = 0; // These assertions match those in the shifted-register constructor. assert(!regoffset_.IsSP()); assert(shift_ == LSL); } else { assert(offset.IsExtendedRegister()); assert(addrmode == Offset); regoffset_ = offset.reg(); extend_ = offset.extend(); shift_amount_ = offset.shift_amount(); shift_= NO_SHIFT; offset_ = 0; // These assertions match those in the extended-register constructor. assert(!regoffset_.IsSP()); assert((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX)); } } bool MemOperand::IsImmediateOffset() const { return (addrmode_ == Offset) && regoffset_.Is(NoReg); } bool MemOperand::IsRegisterOffset() const { return (addrmode_ == Offset) && !regoffset_.Is(NoReg); } bool MemOperand::IsPreIndex() const { return addrmode_ == PreIndex; } bool MemOperand::IsPostIndex() const { return addrmode_ == PostIndex; } // Assembler Assembler::Assembler(HPHP::CodeBlock& cb) : cb_(cb), literal_pool_monitor_(0) { // Assert that this is an LP64 system. assert(sizeof(int) == sizeof(int32_t)); // NOLINT(runtime/sizeof) assert(sizeof(long) == sizeof(int64_t)); // NOLINT(runtime/int) assert(sizeof(void *) == sizeof(int64_t)); // NOLINT(runtime/sizeof) assert(sizeof(1) == sizeof(int32_t)); // NOLINT(runtime/sizeof) assert(sizeof(1L) == sizeof(int64_t)); // NOLINT(runtime/sizeof) } Assembler::~Assembler() { FinalizeCode(); assert(finalized_ || (cb_.used() == 0)); assert(literals_.empty()); } void Assembler::Reset() { #ifndef NDEBUG assert(literal_pool_monitor_ == 0); cb_.zero(); finalized_ = false; #endif cb_.clear(); literals_.clear(); next_literal_pool_check_ = cb_.frontier() + kLiteralPoolCheckInterval; } void Assembler::FinalizeCode() { if (!literals_.empty()) { EmitLiteralPool(); } #ifndef NDEBUG finalized_ = true; #endif } void Assembler::bind(Label* label) { label->is_bound_ = true; label->target_ = cb_.frontier(); while (label->IsLinked()) { // Get the address of the following instruction in the chain. auto const link = Instruction::Cast(label->link_); auto const actual_link = Instruction::Cast(cb_.toDestAddress(label->link_)); auto const next_link = actual_link->ImmPCOffsetTarget(link); // Update the instruction target. actual_link->SetImmPCOffsetTarget(Instruction::Cast(label->target_), link); // Update the label's link. // If the offset of the branch we just updated was 0 (kEndOfChain) we are // done. label->link_ = (link != next_link ? reinterpret_cast<HPHP::CodeAddress>(next_link) : nullptr); } } int Assembler::UpdateAndGetByteOffsetTo(Label* label) { int offset; if (label->IsBound()) { offset = label->target() - cb_.frontier(); } else if (label->IsLinked()) { offset = label->link() - cb_.frontier(); } else { offset = Label::kEndOfChain; } label->set_link(cb_.frontier()); return offset; } // Code generation. void Assembler::br(const Register& xn) { assert(xn.Is64Bits()); Emit(BR | Rn(xn)); } void Assembler::blr(const Register& xn) { assert(xn.Is64Bits()); Emit(BLR | Rn(xn)); } void Assembler::ret(const Register& xn) { assert(xn.Is64Bits()); Emit(RET | Rn(xn)); } void Assembler::b(int imm26) { Emit(B | ImmUncondBranch(imm26)); } void Assembler::b(int imm19, Condition cond) { Emit(B_cond | ImmCondBranch(imm19) | cond); } void Assembler::b(Label* label) { b(UpdateAndGetInstructionOffsetTo(label)); } void Assembler::b(Label* label, Condition cond) { b(UpdateAndGetInstructionOffsetTo(label), cond); } void Assembler::bl(int imm26) { Emit(BL | ImmUncondBranch(imm26)); } void Assembler::bl(Label* label) { bl(UpdateAndGetInstructionOffsetTo(label)); } void Assembler::cbz(const Register& rt, int imm19) { Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt)); } void Assembler::cbz(const Register& rt, Label* label) { cbz(rt, UpdateAndGetInstructionOffsetTo(label)); } void Assembler::cbnz(const Register& rt, int imm19) { Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt)); } void Assembler::cbnz(const Register& rt, Label* label) { cbnz(rt, UpdateAndGetInstructionOffsetTo(label)); } void Assembler::tbz(const Register& rt, unsigned bit_pos, int imm14) { assert(rt.Is64Bits()); Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); } void Assembler::tbz(const Register& rt, unsigned bit_pos, Label* label) { tbz(rt, bit_pos, UpdateAndGetInstructionOffsetTo(label)); } void Assembler::tbnz(const Register& rt, unsigned bit_pos, int imm14) { assert(rt.Is64Bits()); Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); } void Assembler::tbnz(const Register& rt, unsigned bit_pos, Label* label) { tbnz(rt, bit_pos, UpdateAndGetInstructionOffsetTo(label)); } void Assembler::adr(const Register& rd, int imm21) { assert(rd.Is64Bits()); Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd)); } void Assembler::adr(const Register& rd, Label* label) { adr(rd, UpdateAndGetByteOffsetTo(label)); } void Assembler::adrp(const Register& rd, int imm21) { assert(rd.Is64Bits()); Emit(ADRP | ImmPCRelAddress(imm21) | Rd(rd)); } void Assembler::adrp(const Register& rd, Label* label) { adrp(rd, UpdateAndGetByteOffsetTo(label)); } void Assembler::add(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S) { AddSub(rd, rn, operand, S, ADD); } void Assembler::cmn(const Register& rn, const Operand& operand) { Register zr = AppropriateZeroRegFor(rn); add(zr, rn, operand, SetFlags); } void Assembler::sub(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S) { AddSub(rd, rn, operand, S, SUB); } void Assembler::cmp(const Register& rn, const Operand& operand) { Register zr = AppropriateZeroRegFor(rn); sub(zr, rn, operand, SetFlags); } void Assembler::neg(const Register& rd, const Operand& operand, FlagsUpdate S) { Register zr = AppropriateZeroRegFor(rd); sub(rd, zr, operand, S); } void Assembler::adc(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S) { AddSubWithCarry(rd, rn, operand, S, ADC); } void Assembler::sbc(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S) { AddSubWithCarry(rd, rn, operand, S, SBC); } void Assembler::ngc(const Register& rd, const Operand& operand, FlagsUpdate S) { Register zr = AppropriateZeroRegFor(rd); sbc(rd, zr, operand, S); } // Logical instructions. void Assembler::and_(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S) { Logical(rd, rn, operand, (S == SetFlags) ? ANDS : AND); } void Assembler::tst(const Register& rn, const Operand& operand) { and_(AppropriateZeroRegFor(rn), rn, operand, SetFlags); } void Assembler::bic(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S) { Logical(rd, rn, operand, (S == SetFlags) ? BICS : BIC); } void Assembler::orr(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, ORR); } void Assembler::orn(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, ORN); } void Assembler::eor(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, EOR); } void Assembler::eon(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, EON); } void Assembler::lslv(const Register& rd, const Register& rn, const Register& rm) { assert(rd.size() == rn.size()); assert(rd.size() == rm.size()); Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::lsrv(const Register& rd, const Register& rn, const Register& rm) { assert(rd.size() == rn.size()); assert(rd.size() == rm.size()); Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::asrv(const Register& rd, const Register& rn, const Register& rm) { assert(rd.size() == rn.size()); assert(rd.size() == rm.size()); Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::rorv(const Register& rd, const Register& rn, const Register& rm) { assert(rd.size() == rn.size()); assert(rd.size() == rm.size()); Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd)); } // Bitfield operations. void Assembler::bfm(const Register& rd, const Register& rn, unsigned immr, unsigned imms) { assert(rd.size() == rn.size()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | BFM | N | ImmR(immr, rd.size()) | ImmS(imms, rd.size()) | Rn(rn) | Rd(rd)); } void Assembler::sbfm(const Register& rd, const Register& rn, unsigned immr, unsigned imms) { assert(rd.size() == rn.size()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | SBFM | N | ImmR(immr, rd.size()) | ImmS(imms, rd.size()) | Rn(rn) | Rd(rd)); } void Assembler::ubfm(const Register& rd, const Register& rn, unsigned immr, unsigned imms) { assert(rd.size() == rn.size()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | UBFM | N | ImmR(immr, rd.size()) | ImmS(imms, rd.size()) | Rn(rn) | Rd(rd)); } void Assembler::extr(const Register& rd, const Register& rn, const Register& rm, unsigned lsb) { assert(rd.size() == rn.size()); assert(rd.size() == rm.size()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rd.size()) | Rn(rn) | Rd(rd)); } void Assembler::csel(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSEL); } void Assembler::csinc(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSINC); } void Assembler::csinv(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSINV); } void Assembler::csneg(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSNEG); } void Assembler::cset(const Register &rd, Condition cond) { assert((cond != al) && (cond != nv)); Register zr = AppropriateZeroRegFor(rd); csinc(rd, zr, zr, InvertCondition(cond)); } void Assembler::csetm(const Register &rd, Condition cond) { assert((cond != al) && (cond != nv)); Register zr = AppropriateZeroRegFor(rd); csinv(rd, zr, zr, InvertCondition(cond)); } void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) { assert((cond != al) && (cond != nv)); csinc(rd, rn, rn, InvertCondition(cond)); } void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) { assert((cond != al) && (cond != nv)); csinv(rd, rn, rn, InvertCondition(cond)); } void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) { assert((cond != al) && (cond != nv)); csneg(rd, rn, rn, InvertCondition(cond)); } void Assembler::ConditionalSelect(const Register& rd, const Register& rn, const Register& rm, Condition cond, ConditionalSelectOp op) { assert(rd.size() == rn.size()); assert(rd.size() == rm.size()); Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd)); } void Assembler::ccmn(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond) { ConditionalCompare(rn, operand, nzcv, cond, CCMN); } void Assembler::ccmp(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond) { ConditionalCompare(rn, operand, nzcv, cond, CCMP); } void Assembler::DataProcessing3Source(const Register& rd, const Register& rn, const Register& rm, const Register& ra, DataProcessing3SourceOp op) { Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd)); } void Assembler::mul(const Register& rd, const Register& rn, const Register& rm) { assert(AreSameSizeAndType(rd, rn, rm)); DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD); } void Assembler::madd(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DataProcessing3Source(rd, rn, rm, ra, MADD); } void Assembler::mneg(const Register& rd, const Register& rn, const Register& rm) { assert(AreSameSizeAndType(rd, rn, rm)); DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB); } void Assembler::msub(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DataProcessing3Source(rd, rn, rm, ra, MSUB); } void Assembler::umaddl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { assert(rd.Is64Bits() && ra.Is64Bits()); assert(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, UMADDL_x); } void Assembler::smaddl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { assert(rd.Is64Bits() && ra.Is64Bits()); assert(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, SMADDL_x); } void Assembler::umsubl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { assert(rd.Is64Bits() && ra.Is64Bits()); assert(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x); } void Assembler::smsubl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { assert(rd.Is64Bits() && ra.Is64Bits()); assert(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x); } void Assembler::smull(const Register& rd, const Register& rn, const Register& rm) { assert(rd.Is64Bits()); assert(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x); } void Assembler::sdiv(const Register& rd, const Register& rn, const Register& rm) { assert(rd.size() == rn.size()); assert(rd.size() == rm.size()); Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::smulh(const Register& xd, const Register& xn, const Register& xm) { assert(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits()); DataProcessing3Source(xd, xn, xm, xzr, SMULH_x); } void Assembler::udiv(const Register& rd, const Register& rn, const Register& rm) { assert(rd.size() == rn.size()); assert(rd.size() == rm.size()); Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::rbit(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, RBIT); } void Assembler::rev16(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, REV16); } void Assembler::rev32(const Register& rd, const Register& rn) { assert(rd.Is64Bits()); DataProcessing1Source(rd, rn, REV); } void Assembler::rev(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w); } void Assembler::clz(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, CLZ); } void Assembler::cls(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, CLS); } void Assembler::ldp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& src) { LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2)); } void Assembler::stp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& dst) { LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2)); } void Assembler::ldpsw(const Register& rt, const Register& rt2, const MemOperand& src) { assert(rt.Is64Bits()); LoadStorePair(rt, rt2, src, LDPSW_x); } void Assembler::LoadStorePair(const CPURegister& rt, const CPURegister& rt2, const MemOperand& addr, LoadStorePairOp op) { // 'rt' and 'rt2' can only be aliased for stores. assert(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2)); assert(AreSameSizeAndType(rt, rt2)); Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | ImmLSPair(addr.offset(), CalcLSPairDataSize(op)); Instr addrmodeop; if (addr.IsImmediateOffset()) { addrmodeop = LoadStorePairOffsetFixed; } else { assert(addr.offset() != 0); if (addr.IsPreIndex()) { addrmodeop = LoadStorePairPreIndexFixed; } else { assert(addr.IsPostIndex()); addrmodeop = LoadStorePairPostIndexFixed; } } Emit(addrmodeop | memop); } void Assembler::ldnp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& src) { LoadStorePairNonTemporal(rt, rt2, src, LoadPairNonTemporalOpFor(rt, rt2)); } void Assembler::stnp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& dst) { LoadStorePairNonTemporal(rt, rt2, dst, StorePairNonTemporalOpFor(rt, rt2)); } void Assembler::LoadStorePairNonTemporal(const CPURegister& rt, const CPURegister& rt2, const MemOperand& addr, LoadStorePairNonTemporalOp op) { assert(!rt.Is(rt2)); assert(AreSameSizeAndType(rt, rt2)); assert(addr.IsImmediateOffset()); LSDataSize size = CalcLSPairDataSize( static_cast<LoadStorePairOp>(op & LoadStorePairMask)); Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | ImmLSPair(addr.offset(), size)); } // Memory instructions. void Assembler::ldrb(const Register& rt, const MemOperand& src) { LoadStore(rt, src, LDRB_w); } void Assembler::strb(const Register& rt, const MemOperand& dst) { LoadStore(rt, dst, STRB_w); } void Assembler::ldrsb(const Register& rt, const MemOperand& src) { LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w); } void Assembler::ldrh(const Register& rt, const MemOperand& src) { LoadStore(rt, src, LDRH_w); } void Assembler::strh(const Register& rt, const MemOperand& dst) { LoadStore(rt, dst, STRH_w); } void Assembler::ldrsh(const Register& rt, const MemOperand& src) { LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w); } void Assembler::ldr(const CPURegister& rt, const MemOperand& src) { LoadStore(rt, src, LoadOpFor(rt)); } void Assembler::str(const CPURegister& rt, const MemOperand& src) { LoadStore(rt, src, StoreOpFor(rt)); } void Assembler::ldr(const Register& rt, Label* label) { if (rt.Is64Bits()) { Emit(LDR_x_lit | ImmLLiteral(UpdateAndGetInstructionOffsetTo(label)) | Rt(rt)); } else { Emit(LDR_w_lit | ImmLLiteral(UpdateAndGetInstructionOffsetTo(label)) | Rt(rt)); } } void Assembler::ldrsw(const Register& rt, const MemOperand& src) { assert(rt.Is64Bits()); LoadStore(rt, src, LDRSW_x); } void Assembler::ldr(const Register& rt, uint64_t imm) { LoadLiteral(rt, imm, rt.Is64Bits() ? LDR_x_lit : LDR_w_lit); } void Assembler::ldr(const FPRegister& ft, double imm) { uint64_t rawbits = 0; LoadLiteralOp op; if (ft.Is64Bits()) { rawbits = double_to_rawbits(imm); op = LDR_d_lit; } else { assert(ft.Is32Bits()); float float_imm = static_cast<float>(imm); rawbits = float_to_rawbits(float_imm); op = LDR_s_lit; } LoadLiteral(ft, rawbits, op); } void Assembler::ldaddal(const Register& rs, const Register& rt, const MemOperand& src) { assert(src.IsImmediateOffset() && (src.offset() == 0)); // aquire/release semantics uint32_t op = rt.Is64Bits() ? LSELD_ADD_alx : LSELD_ADD_alw; Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); } void Assembler::ldxr(const Register& rt, const MemOperand& src) { assert(src.IsImmediateOffset() && (src.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? LDXR_x : LDXR_w; Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::stxr(const Register& rs, const Register& rt, const MemOperand& dst) { assert(dst.IsImmediateOffset() && (dst.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? STXR_x : STXR_w; Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::ld1(const VRegister& vt, const MemOperand& src) { LoadStoreStruct(vt, src, NEON_LD1_1v); } void Assembler::st1(const VRegister& vt, const MemOperand& src) { LoadStoreStruct(vt, src, NEON_ST1_1v); } void Assembler::mov(const VRegister& vd, const VRegister& vs) { assert(vd.IsSameSizeAndType(vs)); Instr format; if (vd.Is64Bits()) { format = NEON_8B; } else { assert(vd.Is128Bits()); format = NEON_16B; } Emit(format | NEON_ORR | Rm(vs) | Rn(vs) | Rd(vd)); } void Assembler::mov(const Register& rd, const Register& rm) { // Moves involving the stack pointer are encoded as add immediate with // second operand of zero. Otherwise, orr with first operand zr is // used. if (rd.IsSP() || rm.IsSP()) { add(rd, rm, 0); } else { orr(rd, AppropriateZeroRegFor(rd), rm); } } void Assembler::mvn(const Register& rd, const Operand& operand) { orn(rd, AppropriateZeroRegFor(rd), operand); } void Assembler::mrs(const Register& rt, SystemRegister sysreg) { assert(rt.Is64Bits()); Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); } void Assembler::msr(SystemRegister sysreg, const Register& rt) { assert(rt.Is64Bits()); Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); } void Assembler::hint(SystemHint code) { Emit(HINT | ImmHint(code) | Rt(xzr)); } void Assembler::fmov(FPRegister fd, double imm) { if (fd.Is64Bits() && IsImmFP64(imm)) { Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm)); } else if (fd.Is32Bits() && IsImmFP32(imm)) { Emit(FMOV_s_imm | Rd(fd) | ImmFP32(static_cast<float>(imm))); } else if ((imm == 0.0) && (copysign(1.0, imm) == 1.0)) { Register zr = AppropriateZeroRegFor(fd); fmov(fd, zr); } else { ldr(fd, imm); } } void Assembler::fmov(Register rd, FPRegister fn) { assert(rd.size() == fn.size()); FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; Emit(op | Rd(rd) | Rn(fn)); } void Assembler::fmov(FPRegister fd, Register rn) { assert(fd.size() == rn.size()); FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx; Emit(op | Rd(fd) | Rn(rn)); } void Assembler::fmov(FPRegister fd, FPRegister fn) { assert(fd.size() == fn.size()); Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn)); } void Assembler::fmov(const FPRegister& fd, int index, const Register& rn) { assert(index == 1); USE(index); Emit(FMOV_d1_x | Rd(fd) | Rn(rn)); } void Assembler::fmov(const Register& rd, const FPRegister& fn, int index) { assert(index == 1); USE(index); Emit(FMOV_x_d1 | Rd(rd) | Rn(fn)); } void Assembler::fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) { FPDataProcessing2Source(fd, fn, fm, FADD); } void Assembler::fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) { FPDataProcessing2Source(fd, fn, fm, FSUB); } void Assembler::fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) { FPDataProcessing2Source(fd, fn, fm, FMUL); } void Assembler::fmsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm, const FPRegister& fa) { FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d); } void Assembler::fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) { FPDataProcessing2Source(fd, fn, fm, FDIV); } void Assembler::fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) { FPDataProcessing2Source(fd, fn, fm, FMAX); } void Assembler::fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) { FPDataProcessing2Source(fd, fn, fm, FMIN); } void Assembler::fabs(const FPRegister& fd, const FPRegister& fn) { assert(fd.SizeInBits() == fn.SizeInBits()); FPDataProcessing1Source(fd, fn, FABS); } void Assembler::fneg(const FPRegister& fd, const FPRegister& fn) { assert(fd.SizeInBits() == fn.SizeInBits()); FPDataProcessing1Source(fd, fn, FNEG); } void Assembler::fsqrt(const FPRegister& fd, const FPRegister& fn) { assert(fd.SizeInBits() == fn.SizeInBits()); FPDataProcessing1Source(fd, fn, FSQRT); } void Assembler::frintn(const FPRegister& fd, const FPRegister& fn) { assert(fd.SizeInBits() == fn.SizeInBits()); FPDataProcessing1Source(fd, fn, FRINTN); } void Assembler::frintm(const FPRegister& fd, const FPRegister& fn) { assert(fd.SizeInBits() == fn.SizeInBits()); FPDataProcessing1Source(fd, fn, FRINTM); } void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) { assert(fd.SizeInBits() == fn.SizeInBits()); FPDataProcessing1Source(fd, fn, FRINTP); } void Assembler::frintz(const FPRegister& fd, const FPRegister& fn) { assert(fd.SizeInBits() == fn.SizeInBits()); FPDataProcessing1Source(fd, fn, FRINTZ); } void Assembler::fcmp(const FPRegister& fn, const FPRegister& fm) { assert(fn.size() == fm.size()); Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn)); } void Assembler::fcmp(const FPRegister& fn, double value) { USE(value); // Although the fcmp instruction can strictly only take an immediate value of // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't // affect the result of the comparison. assert(value == 0.0); Emit(FPType(fn) | FCMP_zero | Rn(fn)); } void Assembler::fccmp(const FPRegister& fn, const FPRegister& fm, StatusFlags nzcv, Condition cond) { assert(fn.size() == fm.size()); Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv)); } void Assembler::fcsel(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm, Condition cond) { assert(fd.size() == fn.size()); assert(fd.size() == fm.size()); Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd)); } void Assembler::FPConvertToInt(const Register& rd, const FPRegister& fn, FPIntegerConvertOp op) { Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd)); } void Assembler::fcvt(const FPRegister& fd, const FPRegister& fn) { if (fd.Is64Bits()) { // Convert float to double. assert(fn.Is32Bits()); FPDataProcessing1Source(fd, fn, FCVT_ds); } else { // Convert double to float. assert(fn.Is64Bits()); FPDataProcessing1Source(fd, fn, FCVT_sd); } } void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) { FPConvertToInt(rd, fn, FCVTMU); } void Assembler::fcvtms(const Register& rd, const FPRegister& fn) { FPConvertToInt(rd, fn, FCVTMS); } void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) { FPConvertToInt(rd, fn, FCVTNU); } void Assembler::fcvtns(const Register& rd, const FPRegister& fn) { FPConvertToInt(rd, fn, FCVTNS); } void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) { FPConvertToInt(rd, fn, FCVTZU); } void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) { FPConvertToInt(rd, fn, FCVTZS); } void Assembler::scvtf(const FPRegister& fd, const Register& rn, unsigned fbits) { if (fbits == 0) { Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd)); } else { Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | Rd(fd)); } } void Assembler::ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits) { if (fbits == 0) { Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd)); } else { Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | Rd(fd)); } } // Note: // Below, a difference in case for the same letter indicates a // negated bit. // If b is 1, then B is 0. Instr Assembler::ImmFP32(float imm) { assert(IsImmFP32(imm)); // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000 uint32_t bits = float_to_rawbits(imm); // bit7: a000.0000 uint32_t bit7 = ((bits >> 31) & 0x1) << 7; // bit6: 0b00.0000 uint32_t bit6 = ((bits >> 29) & 0x1) << 6; // bit5_to_0: 00cd.efgh uint32_t bit5_to_0 = (bits >> 19) & 0x3f; return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; } Instr Assembler::ImmFP64(double imm) { assert(IsImmFP64(imm)); // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 // 0000.0000.0000.0000.0000.0000.0000.0000 uint64_t bits = double_to_rawbits(imm); // bit7: a000.0000 uint32_t bit7 = ((bits >> 63) & 0x1) << 7; // bit6: 0b00.0000 uint32_t bit6 = ((bits >> 61) & 0x1) << 6; // bit5_to_0: 00cd.efgh uint32_t bit5_to_0 = (bits >> 48) & 0x3f; return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; } // Code generation helpers. void Assembler::MoveWide(const Register& rd, uint64_t imm, int shift, MoveWideImmediateOp mov_op) { if (shift >= 0) { // Explicit shift specified. assert((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); assert(rd.Is64Bits() || (shift == 0) || (shift == 16)); shift /= 16; } else { // Calculate a new immediate and shift combination to encode the immediate // argument. shift = 0; if ((imm & ~0xffffUL) == 0) { // Nothing to do. } else if ((imm & ~(0xffffUL << 16)) == 0) { imm >>= 16; shift = 1; } else if ((imm & ~(0xffffUL << 32)) == 0) { assert(rd.Is64Bits()); imm >>= 32; shift = 2; } else if ((imm & ~(0xffffUL << 48)) == 0) { assert(rd.Is64Bits()); imm >>= 48; shift = 3; } } assert(is_uint16(imm)); Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift)); } void Assembler::AddSub(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubOp op) { assert(rd.size() == rn.size()); if (operand.IsImmediate()) { int64_t immediate = operand.immediate(); assert(IsImmAddSub(immediate)); Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) | ImmAddSub(immediate) | dest_reg | RnSP(rn)); } else if (operand.IsShiftedRegister()) { assert(operand.reg().size() == rd.size()); assert(operand.shift() != ROR); // For instructions of the form: // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ] // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ] // add/sub wsp, wsp, <Wm> [, LSL #0-3 ] // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ] // or their 64-bit register equivalents, convert the operand from shifted to // extended register mode, and emit an add/sub extended instruction. if (rn.IsSP() || rd.IsSP()) { assert(!(rd.IsSP() && (S == SetFlags))); DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S, AddSubExtendedFixed | op); } else { DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op); } } else { assert(operand.IsExtendedRegister()); DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op); } } void Assembler::AddSubWithCarry(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubWithCarryOp op) { assert(rd.size() == rn.size()); assert(rd.size() == operand.reg().size()); assert(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); } void Assembler::hlt(int code) { assert(is_uint16(code)); Emit(HLT | ImmException(code)); } void Assembler::brk(int code) { assert(is_uint16(code)); Emit(BRK | ImmException(code)); } void Assembler::Logical(const Register& rd, const Register& rn, const Operand& operand, LogicalOp op) { assert(rd.size() == rn.size()); if (operand.IsImmediate()) { int64_t immediate = operand.immediate(); unsigned reg_size = rd.size(); assert(immediate != 0); assert(immediate != -1); assert(rd.Is64Bits() || is_uint32(immediate)); // If the operation is NOT, invert the operation and immediate. if ((op & NOT) == NOT) { op = static_cast<LogicalOp>(op & ~NOT); immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask); } unsigned n, imm_s, imm_r; if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { // Immediate can be encoded in the instruction. LogicalImmediate(rd, rn, n, imm_s, imm_r, op); } else { // This case is handled in the macro assembler. not_reached(); } } else { assert(operand.IsShiftedRegister()); assert(operand.reg().size() == rd.size()); Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed); DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op); } } void Assembler::LogicalImmediate(const Register& rd, const Register& rn, unsigned n, unsigned imm_s, unsigned imm_r, LogicalOp op) { unsigned reg_size = rd.size(); Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd); Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) | ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg | Rn(rn)); } void Assembler::ConditionalCompare(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond, ConditionalCompareOp op) { Instr ccmpop; if (operand.IsImmediate()) { int64_t immediate = operand.immediate(); assert(IsImmConditionalCompare(immediate)); ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate); } else { assert(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg()); } Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv)); } void Assembler::DataProcessing1Source(const Register& rd, const Register& rn, DataProcessing1SourceOp op) { assert(rd.size() == rn.size()); Emit(SF(rn) | op | Rn(rn) | Rd(rd)); } void Assembler::FPDataProcessing1Source(const FPRegister& fd, const FPRegister& fn, FPDataProcessing1SourceOp op) { Emit(FPType(fn) | op | Rn(fn) | Rd(fd)); } void Assembler::FPDataProcessing2Source(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm, FPDataProcessing2SourceOp op) { assert(fd.size() == fn.size()); assert(fd.size() == fm.size()); Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd)); } void Assembler::FPDataProcessing3Source(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm, const FPRegister& fa, FPDataProcessing3SourceOp op) { assert(AreSameSizeAndType(fd, fn, fm, fa)); Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa)); } void Assembler::EmitShift(const Register& rd, const Register& rn, Shift shift, unsigned shift_amount) { switch (shift) { case LSL: lsl(rd, rn, shift_amount); break; case LSR: lsr(rd, rn, shift_amount); break; case ASR: asr(rd, rn, shift_amount); break; case ROR: ror(rd, rn, shift_amount); break; default: not_reached(); } } void Assembler::EmitExtendShift(const Register& rd, const Register& rn, Extend extend, unsigned left_shift) { assert(rd.size() >= rn.size()); unsigned reg_size = rd.size(); // Use the correct size of register. Register rn_ = Register(rn.code(), rd.size()); // Bits extracted are high_bit:0. unsigned high_bit = (8 << (extend & 0x3)) - 1; // Number of bits left in the result that are not introduced by the shift. unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1); if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) { switch (extend) { case UXTB: case UXTH: case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break; case SXTB: case SXTH: case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break; case UXTX: case SXTX: { assert(rn.size() == kXRegSize); // Nothing to extend. Just shift. lsl(rd, rn_, left_shift); break; } default: not_reached(); } } else { // No need to extend as the extended bits would be shifted away. lsl(rd, rn_, left_shift); } } void Assembler::DataProcShiftedRegister(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, Instr op) { assert(operand.IsShiftedRegister()); assert(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount()))); Emit(SF(rd) | op | Flags(S) | ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); } void Assembler::DataProcExtendedRegister(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, Instr op) { Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) | dest_reg | RnSP(rn)); } bool Assembler::IsImmAddSub(int64_t immediate) { return is_uint12(immediate) || (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0)); } void Assembler::LoadStore(const CPURegister& rt, const MemOperand& addr, LoadStoreOp op) { Instr memop = op | Rt(rt) | RnSP(addr.base()); ptrdiff_t offset = addr.offset(); if (addr.IsImmediateOffset()) { LSDataSize size = CalcLSDataSize(op); if (IsImmLSScaled(offset, size)) { // Use the scaled addressing mode. Emit(LoadStoreUnsignedOffsetFixed | memop | ImmLSUnsigned(offset >> size)); } else if (IsImmLSUnscaled(offset)) { // Use the unscaled addressing mode. Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset)); } else { // This case is handled in the macro assembler. not_reached(); } } else if (addr.IsRegisterOffset()) { Extend ext = addr.extend(); Shift shift = addr.shift(); unsigned shift_amount = addr.shift_amount(); // LSL is encoded in the option field as UXTX. if (shift == LSL) { ext = UXTX; } // Shifts are encoded in one bit, indicating a left shift by the memory // access size. assert((shift_amount == 0) || (shift_amount == static_cast<unsigned>(CalcLSDataSize(op)))); Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) | ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0)); } else { if (IsImmLSUnscaled(offset)) { if (addr.IsPreIndex()) { Emit(LoadStorePreIndexFixed | memop | ImmLS(offset)); } else { assert(addr.IsPostIndex()); Emit(LoadStorePostIndexFixed | memop | ImmLS(offset)); } } else { // This case is handled in the macro assembler. not_reached(); } } } void Assembler::LoadStoreStruct(const VRegister& vt, const MemOperand& addr, NEONLoadStoreMultiStructOp op) { USE(vt); Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); } // NEON structure loads and stores. Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) { Instr addr_field = RnSP(addr.base()); if (addr.IsPostIndex()) { static_assert(NEONLoadStoreMultiStructPostIndex == static_cast<NEONLoadStoreMultiStructPostIndexOp>( NEONLoadStoreSingleStructPostIndex), ""); addr_field |= NEONLoadStoreMultiStructPostIndex; if (addr.offset() == 0) { addr_field |= RmNot31(addr.regoffset()); } else { // The immediate post index addressing mode is indicated by rm = 31. // The immediate is implied by the number of vector registers used. addr_field |= (0x1f << Rm_offset); } } else { assert(addr.IsImmediateOffset() && (addr.offset() == 0)); } return addr_field; } bool Assembler::IsImmLSUnscaled(ptrdiff_t offset) { return is_int9(offset); } bool Assembler::IsImmLSScaled(ptrdiff_t offset, LSDataSize size) { bool offset_is_size_multiple = (((offset >> size) << size) == offset); return offset_is_size_multiple && is_uint12(offset >> size); } void Assembler::LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op) { assert(is_int32(imm) || is_uint32(imm) || (rt.Is64Bits())); BlockLiteralPoolScope scope(this); RecordLiteral(imm, rt.SizeInBytes()); Emit(op | ImmLLiteral(0) | Rt(rt)); } // Test if a given value can be encoded in the immediate field of a logical // instruction. // If it can be encoded, the function returns true, and values pointed to by n, // imm_s and imm_r are updated with immediates encoded in the format required // by the corresponding fields in the logical instruction. // If it can not be encoded, the function returns false, and the values pointed // to by n, imm_s and imm_r are undefined. bool Assembler::IsImmLogical(uint64_t value, unsigned width, unsigned* n, unsigned* imm_s, unsigned* imm_r) { assert((n != nullptr) && (imm_s != nullptr) && (imm_r != nullptr)); assert((width == kWRegSize) || (width == kXRegSize)); // Logical immediates are encoded using parameters n, imm_s and imm_r using // the following table: // // N imms immr size S R // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) // 0 11110s xxxxxr 2 UInt(s) UInt(r) // (s bits must not be all set) // // A pattern is constructed of size bits, where the least significant S+1 // bits are set. The pattern is rotated right by R, and repeated across a // 32 or 64-bit value, depending on destination register width. // // To test if an arbitrary immediate can be encoded using this scheme, an // iterative algorithm is used. // // TODO: This code does not consider using X/W register overlap to support // 64-bit immediates where the top 32-bits are zero, and the bottom 32-bits // are an encodable logical immediate. // 1. If the value has all set or all clear bits, it can't be encoded. if ((value == 0) || (value == 0xffffffffffffffffUL) || ((width == kWRegSize) && (value == 0xffffffff))) { return false; } unsigned lead_zero = CountLeadingZeros(value, width); unsigned lead_one = CountLeadingZeros(~value, width); unsigned trail_zero = CountTrailingZeros(value, width); unsigned trail_one = CountTrailingZeros(~value, width); unsigned set_bits = CountSetBits(value, width); // The fixed bits in the immediate s field. // If width == 64 (X reg), start at 0xFFFFFF80. // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit // widths won't be executed. int imm_s_fixed = (width == kXRegSize) ? -128 : -64; int imm_s_mask = 0x3F; for (;;) { // 2. If the value is two bits wide, it can be encoded. if (width == 2) { *n = 0; *imm_s = 0x3C; *imm_r = (value & 3) - 1; return true; } *n = (width == 64) ? 1 : 0; *imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask); if ((lead_zero + set_bits) == width) { *imm_r = 0; } else { *imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one; } // 3. If the sum of leading zeros, trailing zeros and set bits is equal to // the bit width of the value, it can be encoded. if (lead_zero + trail_zero + set_bits == width) { return true; } // 4. If the sum of leading ones, trailing ones and unset bits in the // value is equal to the bit width of the value, it can be encoded. if (lead_one + trail_one + (width - set_bits) == width) { return true; } // 5. If the most-significant half of the bitwise value is equal to the // least-significant half, return to step 2 using the least-significant // half of the value. uint64_t mask = (1UL << (width >> 1)) - 1; if ((value & mask) == ((value >> (width >> 1)) & mask)) { width >>= 1; set_bits >>= 1; imm_s_fixed >>= 1; continue; } // 6. Otherwise, the value can't be encoded. return false; } } bool Assembler::IsImmConditionalCompare(int64_t immediate) { return is_uint5(immediate); } bool Assembler::IsImmFP32(float imm) { // Valid values will have the form: // aBbb.bbbc.defg.h000.0000.0000.0000.0000 uint32_t bits = float_to_rawbits(imm); // bits[19..0] are cleared. if ((bits & 0x7ffff) != 0) { return false; } // bits[29..25] are all set or all cleared. uint32_t b_pattern = (bits >> 16) & 0x3e00; if (b_pattern != 0 && b_pattern != 0x3e00) { return false; } // bit[30] and bit[29] are opposite. if (((bits ^ (bits << 1)) & 0x40000000) == 0) { return false; } return true; } bool Assembler::IsImmFP64(double imm) { // Valid values will have the form: // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 // 0000.0000.0000.0000.0000.0000.0000.0000 uint64_t bits = double_to_rawbits(imm); // bits[47..0] are cleared. if ((bits & 0xffffffffffffL) != 0) { return false; } // bits[61..54] are all set or all cleared. uint32_t b_pattern = (bits >> 48) & 0x3fc0; if (b_pattern != 0 && b_pattern != 0x3fc0) { return false; } // bit[62] and bit[61] are opposite. if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) { return false; } return true; } LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) { assert(rt.IsValid()); if (rt.IsRegister()) { return rt.Is64Bits() ? LDR_x : LDR_w; } else { assert(rt.IsFPRegister()); return rt.Is64Bits() ? LDR_d : LDR_s; } } LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt, const CPURegister& rt2) { assert(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? LDP_x : LDP_w; } else { assert(rt.IsFPRegister()); return rt.Is64Bits() ? LDP_d : LDP_s; } } LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) { assert(rt.IsValid()); if (rt.IsRegister()) { return rt.Is64Bits() ? STR_x : STR_w; } else { assert(rt.IsFPRegister()); return rt.Is64Bits() ? STR_d : STR_s; } } LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt, const CPURegister& rt2) { assert(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? STP_x : STP_w; } else { assert(rt.IsFPRegister()); return rt.Is64Bits() ? STP_d : STP_s; } } LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor( const CPURegister& rt, const CPURegister& rt2) { assert(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? LDNP_x : LDNP_w; } else { assert(rt.IsFPRegister()); return rt.Is64Bits() ? LDNP_d : LDNP_s; } } LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor( const CPURegister& rt, const CPURegister& rt2) { assert(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? STNP_x : STNP_w; } else { assert(rt.IsFPRegister()); return rt.Is64Bits() ? STNP_d : STNP_s; } } void Assembler::RecordLiteral(int64_t imm, unsigned size) { literals_.push_front(new Literal(cb_.frontier(), imm, size)); } // Check if a literal pool should be emitted. Currently a literal is emitted // when: // * the distance to the first literal load handled by this pool is greater // than the recommended distance and the literal pool can be emitted without // generating a jump over it. // * the distance to the first literal load handled by this pool is greater // than twice the recommended distance. // TODO: refine this heuristic using real world data. void Assembler::CheckLiteralPool(LiteralPoolEmitOption option) { if (IsLiteralPoolBlocked()) { // Literal pool emission is forbidden, no point in doing further checks. return; } if (literals_.empty()) { // No literal pool to emit. next_literal_pool_check_ += kLiteralPoolCheckInterval; return; } intptr_t distance = cb_.frontier() - literals_.back()->pc_; if ((distance < kRecommendedLiteralPoolRange) || ((option == JumpRequired) && (distance < (2 * kRecommendedLiteralPoolRange)))) { // We prefer not to have to jump over the literal pool. next_literal_pool_check_ += kLiteralPoolCheckInterval; return; } EmitLiteralPool(option); } void Assembler::EmitLiteralPool(LiteralPoolEmitOption option) { // Prevent recursive calls while emitting the literal pool. BlockLiteralPoolScope scope(this); Label marker; Label start_of_pool; Label end_of_pool; if (option == JumpRequired) { b(&end_of_pool); } // Leave space for a literal pool marker. This is populated later, once the // size of the pool is known. bind(&marker); nop(); // Now populate the literal pool. bind(&start_of_pool); std::list<Literal*>::iterator it; for (it = literals_.begin(); it != literals_.end(); it++) { // Update the load-literal instruction to point to this pool entry. auto load_literal = Instruction::Cast((*it)->pc_); load_literal->SetImmLLiteral(Instruction::Cast(cb_.frontier())); // Copy the data into the pool. uint64_t value= (*it)->value_; unsigned size = (*it)->size_; assert((size == kXRegSizeInBytes) || (size == kWRegSizeInBytes)); assert(cb_.canEmit(size)); cb_.bytes(size, reinterpret_cast<const uint8_t*>(&value)); delete *it; } literals_.clear(); bind(&end_of_pool); // The pool size should always be a multiple of four bytes because that is the // scaling applied by the LDR(literal) instruction, even for X-register loads. assert((SizeOfCodeGeneratedSince(&start_of_pool) % 4) == 0); uint64_t pool_size = SizeOfCodeGeneratedSince(&start_of_pool) / 4; // Literal pool marker indicating the size in words of the literal pool. // We use a literal load to the zero register, the offset indicating the // size in words. This instruction can encode a large enough offset to span // the entire pool at its maximum size. Instr marker_instruction = LDR_x_lit | ImmLLiteral(pool_size) | Rt(xzr); memcpy(marker.target(), &marker_instruction, kInstructionSize); next_literal_pool_check_ = cb_.frontier() + kLiteralPoolCheckInterval; } // Return the size in bytes, required by the literal pool entries. This does // not include any marker or branch over the literal pool itself. size_t Assembler::LiteralPoolSize() { size_t size = 0; std::list<Literal*>::iterator it; for (it = literals_.begin(); it != literals_.end(); it++) { size += (*it)->size_; } return size; } bool AreAliased(const CPURegister& reg1, const CPURegister& reg2, const CPURegister& reg3, const CPURegister& reg4, const CPURegister& reg5, const CPURegister& reg6, const CPURegister& reg7, const CPURegister& reg8) { int number_of_valid_regs = 0; int number_of_valid_fpregs = 0; RegList unique_regs = 0; RegList unique_fpregs = 0; const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8}; for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) { if (regs[i].IsRegister()) { number_of_valid_regs++; unique_regs |= regs[i].Bit(); } else if (regs[i].IsFPRegister()) { number_of_valid_fpregs++; unique_fpregs |= regs[i].Bit(); } else { assert(!regs[i].IsValid()); } } int number_of_unique_regs = CountSetBits(unique_regs, sizeof(unique_regs) * 8); int number_of_unique_fpregs = CountSetBits(unique_fpregs, sizeof(unique_fpregs) * 8); assert(number_of_valid_regs >= number_of_unique_regs); assert(number_of_valid_fpregs >= number_of_unique_fpregs); return (number_of_valid_regs != number_of_unique_regs) || (number_of_valid_fpregs != number_of_unique_fpregs); } bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2, const CPURegister& reg3, const CPURegister& reg4, const CPURegister& reg5, const CPURegister& reg6, const CPURegister& reg7, const CPURegister& reg8) { assert(reg1.IsValid()); bool match = true; match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1); match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1); match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1); match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1); match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1); match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1); match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1); return match; } } // namespace vixl