sledge/semantics/llvmScript.sml (787 lines of code) (raw):
(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* A mini-LLVM model, focussing on the semantics of the parts of the IR that
* are relevant for the LLVM -> LLAIR translation, especially exceptions. *)
open HolKernel boolLib bossLib Parse;
open llistTheory pathTheory;
open settingsTheory memory_modelTheory;
new_theory "llvm";
numLib.prefer_num ();
(* ----- Abstract syntax ----- *)
(* Only support 1, 8, 32, and 64 bit words for now *)
Datatype:
size = W1 | W8 | W32 | W64
End
Datatype:
ty =
| FunT ty (ty list)
| IntT size
| PtrT ty
| ArrT num ty
| StrT (ty list)
End
Datatype:
label = Lab string
End
Datatype:
reg = Reg string
End
Datatype:
glob_var = Glob_var string
End
Datatype:
fun_name = Fn string
End
Datatype:
const =
| IntC size int
| StrC ((ty # const) list)
| ArrC ((ty # const) list)
| GepC ty const (ty # const) ((ty # const) list)
| GlobalC glob_var
| UndefC
End
Datatype:
arg = Constant const | Variable reg
End
Type targ = ``:ty # arg``
Datatype:
cond = Eq | Ult | Slt
End
Datatype:
phi = Phi reg ty ((label option, arg) alist)
End
Datatype:
cast_op = Trunc | Zext | Sext | Ptrtoint | Inttoptr
End
(*
* The Exit instruction below models a system/libc call to exit the program. The
* semantics needs some way to tell the difference between normally terminated
* programs and stuck states, and this lets it do that. From a C++ perspective,
* a program could call this directly, in which case it's good to model, or it
* might simply return from main and then the code in libc that called main will
* call exit. However, adding special handling for main in the semantics will
* cruft things up a bit, and it's not very satisfying, because it's not really
* an LLVM concept.
*)
Datatype:
instr =
(* Terminators *)
| Ret targ
| Br arg label label
| Invoke reg ty arg (targ list) label label
| Unreachable
| Exit arg
(* Non-terminators *)
| Sub reg bool bool ty arg arg
| Extractvalue reg targ (const list)
| Insertvalue reg targ targ (const list)
| Alloca reg ty targ
| Load reg ty targ
| Store targ targ
| Gep reg ty targ (targ list)
| Cast reg cast_op targ ty
| Icmp reg cond ty arg arg
| Call reg ty fun_name (targ list)
(* C++ runtime functions *)
| Cxa_allocate_exn reg arg
| Cxa_throw arg arg arg
| Cxa_begin_catch reg arg
| Cxa_end_catch
| Cxa_get_exception_ptr reg arg
End
Datatype:
clause = Catch targ
End
Datatype:
landingpad = Landingpad ty bool (clause list)
End
Datatype:
blockHeader =
| Entry
| Head (phi list) (landingpad option)
End
Datatype:
block = <| h : blockHeader; body : instr list |>
End
Datatype:
def =
<| r : ty;
params : (ty # reg) list;
(* None -> entry block, and Some name -> non-entry block *)
blocks : (label option, block) alist |>
End
Type prog = ``:(fun_name, def) alist``
Definition terminator_def:
(terminator (Ret _) ⇔ T) ∧
(terminator (Br _ _ _) ⇔ T) ∧
(terminator (Invoke _ _ _ _ _ _) ⇔ T) ∧
(terminator Unreachable ⇔ T) ∧
(terminator (Exit _) ⇔ T) ∧
(terminator (Cxa_throw _ _ _) ⇔ T) ∧
(terminator _ ⇔ F)
End
(* ----- Semantic states ----- *)
Definition pointer_size_def:
pointer_size = 8
End
Datatype:
flat_v =
| W1V word1
| W8V word8
| W32V word32
| W64V word64
(* LLVM guarantees that 64 bits is enough to hold a pointer *)
| PtrV word64
| UndefV
End
Type v = ``:flat_v reg_v``
Datatype:
pv = <| poison : bool; value : v |>
End
(* Instruction pointer into a block. Phi_ip indicates to do the phi instruction,
* coming from the given label. Offset points to a normal (non-phi) instruction.
* *)
Datatype:
bip =
| Phi_ip (label option)
| Offset num
End
Datatype:
pc = <| f : fun_name; b : label option; i : bip |>
End
Datatype:
frame = <| ret : pc; saved_locals : reg |-> pv; result_var : reg; stack_allocs : addr list |>
End
Datatype:
state =
<| ip : pc;
(* Keep the size of the global with its memory address *)
globals : glob_var |-> (num # word64);
locals : reg |-> pv;
stack : frame list;
heap : bool heap;
status : trace_type |>
End
(* ----- Things about types ----- *)
(* Given a number n that fits into pointer_size number of bytes, create the
* pointer value. Since the pointer is represented as a 64-bit word,
* pointer_size must be 8 or less, which LLVM guarantees *)
Definition mk_ptr_def:
mk_ptr n =
if n < 256 ** pointer_size then Some (FlatV (PtrV (n2w n))) else None
End
(* How many bytes a value of the given type occupies *)
Definition sizeof_def:
(sizeof (IntT W1) = 1) ∧
(sizeof (IntT W8) = 1) ∧
(sizeof (IntT W32) = 4) ∧
(sizeof (IntT W64) = 8) ∧
(sizeof (PtrT _) = pointer_size) ∧
(sizeof (ArrT n t) = n * sizeof t) ∧
(sizeof (StrT ts) = sum (map sizeof ts))
Termination
WF_REL_TAC `measure ty_size` >> simp [] >>
Induct >> rw [definition "ty_size_def"] >> simp [] >>
first_x_assum drule >> decide_tac
End
Definition first_class_type_def:
(first_class_type (IntT _) ⇔ T) ∧
(first_class_type (PtrT _) ⇔ T) ∧
(first_class_type (ArrT _ t) ⇔ first_class_type t) ∧
(first_class_type (StrT ts) ⇔ every first_class_type ts) ∧
(first_class_type _ ⇔ F)
Termination
WF_REL_TAC `measure ty_size` >>
rw [] >>
Induct_on `ts` >> rw [definition "ty_size_def"] >>
res_tac >> decide_tac
End
(* Are the indices all in bounds? *)
Definition indices_ok_def:
(indices_ok _ [] ⇔ T) ∧
(indices_ok (ArrT n t) (i::indices) ⇔
i < n ∧ indices_ok t indices) ∧
(indices_ok (StrT ts) (i::indices) ⇔
i < length ts ∧ indices_ok (el i ts) indices) ∧
(indices_ok _ _ ⇔ F)
End
(* Which values have which types *)
Inductive value_type:
(∀w1. value_type (IntT W1) (FlatV (W1V w1))) ∧
(∀w8. value_type (IntT W8) (FlatV (W8V w8))) ∧
(∀w32. value_type (IntT W32) (FlatV (W32V w32))) ∧
(∀w64. value_type (IntT W64) (FlatV (W64V w64))) ∧
(∀t ptr. value_type (PtrT t) (FlatV (PtrV ptr))) ∧
(∀t vs n.
every (value_type t) vs ∧ length vs = n ∧ first_class_type t
⇒
value_type (ArrT n t) (AggV vs)) ∧
(∀ts vs.
list_rel value_type ts vs
⇒
value_type (StrT ts) (AggV vs))
End
(* Get the component of a type referred by the indices *)
Definition extract_type_def:
(extract_type t [] = Some t) ∧
(extract_type (ArrT n t) (i::idx) =
if i < n then
extract_type t idx
else
None) ∧
(extract_type (StrT ts) (i::idx) =
if i < length ts then
extract_type (el i ts) idx
else
None) ∧
(extract_type _ _ = None)
End
(* Calculate the offset given by a list of indices *)
Definition get_offset_def:
(get_offset _ [] = Some 0) ∧
(get_offset (ArrT _ t) (i::is) =
case get_offset t is of
| None => None
| Some off => Some (i * sizeof t + off)) ∧
(get_offset (StrT ts) (i::is) =
if i < length ts then
case get_offset (el i ts) is of
| None => None
| Some off => Some (sum (map sizeof (take i ts)) + off)
else
None) ∧
(get_offset _ _ = Some 0)
End
(* ----- Semantic transitions ----- *)
(* Put a 64-bit word into a smaller value, truncating if necessary *)
Definition w64_cast_def:
(w64_cast w (IntT W1) = Some (FlatV (W1V (w2w w)))) ∧
(w64_cast w (IntT W8) = Some (FlatV (W8V (w2w w)))) ∧
(w64_cast w (IntT W32) = Some (FlatV (W32V (w2w w)))) ∧
(w64_cast w (IntT W64) = Some (FlatV (W64V w))) ∧
(w64_cast _ _ = None)
End
Definition bool_to_v_def:
bool_to_v b = if b then FlatV (W1V 1w) else FlatV (W1V 0w)
End
(* Convert a word value into an integer, interpreting the word in 2's complement *)
Definition signed_v_to_int_def:
(signed_v_to_int (FlatV (W1V w)) = Some (w2i w)) ∧
(signed_v_to_int (FlatV (W8V w)) = Some (w2i w)) ∧
(signed_v_to_int (FlatV (W32V w)) = Some (w2i w)) ∧
(signed_v_to_int (FlatV (W64V w)) = Some (w2i w)) ∧
(signed_v_to_int _ = None)
End
(* Convert a non-negative word value (interpreted as 2's complement) into a natural number *)
Definition signed_v_to_num_def:
signed_v_to_num v =
option_join
(option_map (\i. if i < 0 then None else Some (Num i)) (signed_v_to_int v))
End
(* Convert a word value into a natural number, interpreting the word as unsigned *)
Definition unsigned_v_to_num_def:
(unsigned_v_to_num (FlatV (W1V w)) = Some (w2n w)) ∧
(unsigned_v_to_num (FlatV (W8V w)) = Some (w2n w)) ∧
(unsigned_v_to_num (FlatV (W32V w)) = Some (w2n w)) ∧
(unsigned_v_to_num (FlatV (W64V w)) = Some (w2n w)) ∧
(unsigned_v_to_num _ = None)
End
Inductive eval_const:
(∀g i. eval_const g (IntC W1 i) (FlatV (W1V (i2w i)))) ∧
(∀g i. eval_const g (IntC W8 i) (FlatV (W8V (i2w i)))) ∧
(∀g i. eval_const g (IntC W32 i) (FlatV (W32V (i2w i)))) ∧
(∀g i. eval_const g (IntC W64 i) (FlatV (W64V (i2w i)))) ∧
(∀g tconsts rs.
list_rel (eval_const g) (map snd tconsts) rs
⇒
eval_const g (StrC tconsts) (AggV rs)) ∧
(∀g tconsts rs.
list_rel (eval_const g) (map snd tconsts) rs
⇒
eval_const g (ArrC tconsts) (AggV rs)) ∧
(∀g ty ptr t idx indices ptr' n ns off vs v.
eval_const g ptr (FlatV (PtrV ptr')) ∧
eval_const g idx v ∧
signed_v_to_num v = Some n ∧
list_rel (λ(t, ci) v. eval_const g ci v) indices vs ∧
map signed_v_to_num vs = map Some ns ∧
get_offset ty ns = Some off
⇒
eval_const g (GepC ty ptr (t, idx) indices) (FlatV (PtrV (n2w ((w2n ptr') + (sizeof ty) * n + off))))) ∧
(∀g var s w.
flookup g var = Some (s, w)
⇒
eval_const g (GlobalC var) (FlatV (PtrV w)))
End
Inductive eval:
(∀s x v.
flookup s.locals x = Some v
⇒
eval s (Variable x) v) ∧
(∀s c v.
eval_const s.globals c v
⇒
eval s (Constant c) <| poison := F; value := v |>)
End
(* BEGIN Functions to interface to the generic memory model *)
Definition type_to_shape_def:
(type_to_shape (IntT s) = Flat (sizeof (IntT s)) (IntT s)) ∧
(type_to_shape (PtrT t) = Flat (sizeof (PtrT t)) (PtrT t)) ∧
(type_to_shape (ArrT n t) = Array (type_to_shape t) n) ∧
(type_to_shape (StrT ts) = Tuple (map type_to_shape ts))
Termination
WF_REL_TAC `measure ty_size` >> rw [] >>
Induct_on `ts` >> rw [definition "ty_size_def"] >>
res_tac >> simp []
End
Definition convert_value_def:
(convert_value (IntT W1) n = W1V (if n = 0 then 0w else 1w)) ∧
(convert_value (IntT W8) n = W8V (n2w n)) ∧
(convert_value (IntT W32) n = W32V (n2w n)) ∧
(convert_value (IntT W64) n = W64V (n2w n)) ∧
(convert_value (PtrT _) n = PtrV (n2w n))
End
Definition bytes_to_llvm_value_def:
bytes_to_llvm_value t bs =
(bytes_to_value (λn t w. convert_value t w) (type_to_shape t) bs)
End
Definition unconvert_value_def:
(unconvert_value (W1V w) = (1, w2n w)) ∧
(unconvert_value (W8V w) = (1, w2n w)) ∧
(unconvert_value (W32V w) = (4, w2n w)) ∧
(unconvert_value (W64V w) = (8, w2n w)) ∧
(unconvert_value (PtrV w) = (pointer_size, w2n w))
End
Definition llvm_value_to_bytes_def:
llvm_value_to_bytes v =
value_to_bytes unconvert_value v
End
(* END Functions to interface to the generic memory model *)
Definition do_sub_def:
do_sub (nuw:bool) (nsw:bool) (v1:pv) (v2:pv) t =
let diff =
case (v1.value, v2.value, t) of
| (FlatV (W1V w1), FlatV (W1V w2), IntT W1) =>
Some ((FlatV o W1V ## I) (add_with_carry (w1, ¬w2, T)))
| (FlatV (W8V w1), FlatV (W8V w2), IntT W8) =>
Some ((FlatV o W8V ## I) (add_with_carry (w1, ¬w2, T)))
| (FlatV (W32V w1), FlatV (W32V w2), IntT W32) =>
Some ((FlatV o W32V ## I) (add_with_carry (w1, ¬w2, T)))
| (FlatV (W64V w1), FlatV (W64V w2), IntT W64) =>
Some ((FlatV o W64V ## I) (add_with_carry (w1, ¬w2, T)))
| _ => None
in
option_map
(\(diff, u_overflow, s_overflow).
let p = ((nuw ∧ u_overflow) ∨ (nsw ∧ s_overflow) ∨ v1.poison ∨ v2.poison) in
<| poison := p; value := diff |>)
diff
End
Definition get_comp_def:
(get_comp Eq = $=) ∧
(get_comp Slt = $<) ∧
(get_comp Ult = $<+)
End
Definition do_cast_def:
(do_cast Trunc v t =
option_join (option_map (λw. w64_cast (n2w w) t) (unsigned_v_to_num v))) ∧
(do_cast Zext v t =
option_join (option_map (λw. w64_cast (n2w w) t) (unsigned_v_to_num v))) ∧
(do_cast Sext v t =
option_join (option_map (λi. w64_cast (i2w i) t) (signed_v_to_int v))) ∧
(do_cast Ptrtoint v t =
case v of
| FlatV (PtrV w) => w64_cast w t
| _ => None) ∧
(do_cast Inttoptr v t =
option_join (option_map mk_ptr (unsigned_v_to_num v)))
End
(*
EVAL ``do_cast Trunc (FlatV (W32V 4294967295w)) (IntT W8) = Some (FlatV (W8V 255w))``
EVAL ``do_cast Trunc (FlatV (W32V 511w)) (IntT W8) = Some (FlatV (W8V 255w))``
EVAL ``do_cast Trunc (FlatV (W32V 255w)) (IntT W8) = Some (FlatV (W8V 255w))``
EVAL ``do_cast Trunc (FlatV (W32V 4294967166w)) (IntT W8) = Some (FlatV (W8V 126w))``
EVAL ``do_cast Trunc (FlatV (W32V 257w)) (IntT W8) = Some (FlatV (W8V 1w))``
EVAL ``do_cast Zext (FlatV (W8V 127w)) (IntT W32) = Some (FlatV (W32V 127w))``
EVAL ``do_cast Zext (FlatV (W8V 129w)) (IntT W32) = Some (FlatV (W32V 129w))``
EVAL ``do_cast Sext (FlatV (W8V 127w)) (IntT W32) = Some (FlatV (W32V 127w))``
EVAL ``do_cast Sext (FlatV (W8V 129w)) (IntT W32) = Some (FlatV (W32V (n2w (2 ** 32 - 1 - 255 + 129))))``
*)
Definition do_icmp_def:
do_icmp c v1 v2 =
option_map (\b. <| poison := (v1.poison ∨ v2.poison); value := bool_to_v b |>)
(case (v1.value, v2.value) of
| (FlatV (W1V w1), FlatV (W1V w2)) => Some ((get_comp c) w1 w2)
| (FlatV (W8V w1), FlatV (W8V w2)) => Some ((get_comp c) w1 w2)
| (FlatV (W32V w1), FlatV (W32V w2)) => Some ((get_comp c) w1 w2)
| (FlatV (W64V w1), FlatV (W64V w2)) => Some ((get_comp c) w1 w2)
| (FlatV (PtrV w1), FlatV (PtrV w2)) => Some ((get_comp c) w1 w2)
| _ => None)
End
Inductive do_phi:
(∀from_l s id lands entries e v.
alookup entries from_l = Some e ∧
eval s e v
⇒
do_phi from_l s (Phi id lands entries) (id, v))
End
Definition extract_value_def:
(extract_value v [] = Some v) ∧
(extract_value (AggV vs) (i::indices) =
if i < length vs then
extract_value (el i vs) indices
else
None) ∧
(extract_value _ _ = None)
End
Definition insert_value_def:
(insert_value _ v [] = Some v) ∧
(insert_value (AggV vs) v (i::indices) =
if i < length vs then
case insert_value (el i vs) v indices of
| None => None
| Some v => Some (AggV (list_update v i vs))
else
None) ∧
(insert_value _ _ _ = None)
End
Definition update_result_def:
update_result x v s = s with locals := s.locals |+ (x, v)
End
Definition inc_bip_def:
(inc_bip (Phi_ip _) = Offset 0) ∧
(inc_bip (Offset i) = Offset (i + 1))
End
Definition inc_pc_def:
inc_pc s = s with ip := (s.ip with i := inc_bip s.ip.i)
End
Inductive get_obs:
(∀s w bytes x n. flookup s.globals x = Some (n, w) ⇒ get_obs s w bytes (W x bytes)) ∧
(∀s w bytes. (∀n. (n, w) ∉ FRANGE s.globals) ⇒ get_obs s w bytes Tau)
End
(* NB, the semantics tracks the poison values, but not much thought has been put
* into getting it exactly right, so we don't have much confidence that it is
* exactly right. We also are currently ignoring the undefined value. *)
Inductive step_instr:
(∀prog s t a fr v st new_h.
s.stack = fr::st ∧
deallocate fr.stack_allocs s.heap = new_h ∧
eval s a v
⇒
step_instr prog s
(Ret (t, a)) Tau
(update_result fr.result_var v
<| ip := fr.ret;
globals := s.globals;
locals := fr.saved_locals;
stack := st;
heap := new_h;
status := s.status |>)) ∧
(∀prog s a l1 l2 tf l p.
eval s a <| poison := p; value := FlatV (W1V tf) |> ∧
l = Some (if tf = 0w then l2 else l1)
⇒
step_instr prog s
(Br a l1 l2) Tau
(s with ip := <| f := s.ip.f; b := l; i := Phi_ip s.ip.b |>)) ∧
(* TODO *)
(∀prog s r t a args l1 l2. step_instr prog s (Invoke r t a args l1 l2) Tau s) ∧
(∀prog s a exit_code v1.
eval s a v1 ∧
signed_v_to_int v1.value = Some exit_code
⇒
step_instr prog s
(Exit a) (Exit exit_code)
(s with status := Complete exit_code)) ∧
(∀prog s r nuw nsw t a1 a2 v3 v1 v2.
eval s a1 v1 ∧
eval s a2 v2 ∧
do_sub nuw nsw v1 v2 t = Some v3
⇒
step_instr prog s
(Sub r nuw nsw t a1 a2) Tau
(inc_pc (update_result r v3 s))) ∧
(∀prog s r t a const_indices v vs ns result.
eval s a v ∧
list_rel (eval_const s.globals) const_indices vs ∧
(* The manual implies (but does not explicitly state) that the indices are
* interpreted as signed numbers *)
map signed_v_to_num vs = map Some ns ∧
extract_value v.value ns = Some result
⇒
step_instr prog s
(Extractvalue r (t, a) const_indices) Tau
(inc_pc (update_result r <| poison := v.poison; value := result |> s))) ∧
(∀prog s r t1 a1 t2 a2 const_indices result v1 v2 ns vs.
eval s a1 v1 ∧
eval s a2 v2 ∧
list_rel (eval_const s.globals) const_indices vs ∧
(* The manual implies (but does not explicitly state) that the indices are
* interpreted as signed numbers *)
map signed_v_to_num vs = map Some ns ∧
insert_value v1.value v2.value ns = Some result
⇒
step_instr prog s
(Insertvalue r (t1, a1) (t2, a2) const_indices) Tau
(inc_pc (update_result r
<| poison := (v1.poison ∨ v2.poison); value := result |> s))) ∧
(∀prog s r t t1 a1 ptr new_h v n n2.
eval s a1 v ∧
(* TODO Question is the number to allocate interpreted as a signed or
* unsigned quantity. E.g., if we allocate i8 0xFF does that do 255 or -1? *)
signed_v_to_num v.value = Some n ∧
allocate s.heap (n * sizeof t) v.poison (n2, new_h) ∧
mk_ptr n2 = Some ptr
⇒
step_instr prog s
(Alloca r t (t1, a1)) Tau
(inc_pc (update_result r <| poison := v.poison; value := ptr |>
(s with heap := new_h)))) ∧
(∀prog s r t t1 a1 pbytes w interval freeable p1.
eval s a1 <| poison := p1; value := FlatV (PtrV w) |> ∧
interval = Interval freeable (w2n w) (w2n w + sizeof t) ∧
is_allocated interval s.heap ∧
pbytes = get_bytes s.heap interval ∧
first_class_type t
⇒
step_instr prog s
(Load r t (t1, a1)) Tau
(inc_pc (update_result r <| poison := (T ∈ set (map fst pbytes));
value := fst (bytes_to_llvm_value t (map snd pbytes)) |>
s))) ∧
(∀prog s t1 a1 t2 a2 obs p2 bytes w v1 freeable interval.
eval s a2 <| poison := p2; value := FlatV (PtrV w) |> ∧
eval s a1 v1 ∧
interval = Interval freeable (w2n w) (w2n w + sizeof t1) ∧
is_allocated interval s.heap ∧
bytes = llvm_value_to_bytes v1.value ∧
length bytes = sizeof t1 ∧
get_obs s w bytes obs
⇒
step_instr prog s
(Store (t1, a1) (t2, a2)) obs
(inc_pc (s with heap := set_bytes p2 bytes (w2n w) s.heap))) ∧
(∀prog s r t t1 a1 tindices v1 i1 indices v w1 i is off ptr.
list_rel (eval s o snd) tindices (i1::indices) ∧
eval s a1 v ∧
v.value = FlatV (PtrV w1) ∧
(* The manual states that the indices are interpreted as signed numbers *)
signed_v_to_num i1.value = Some i ∧
map (λx. signed_v_to_num x.value) indices = map Some is ∧
get_offset t1 is = Some off ∧
mk_ptr (w2n w1 + sizeof t1 * i + off) = Some ptr
⇒
step_instr prog s
(Gep r t ((PtrT t1), a1) tindices) Tau
(inc_pc (update_result r
<| poison := (v1.poison ∨ i1.poison ∨ exists (λv. v.poison) indices);
value := ptr |>
s))) ∧
(∀prog s cop r t1 a1 t v1 v2.
eval s a1 v1 ∧
do_cast cop v1.value t = Some v2
⇒
step_instr prog s
(Cast r cop (t1, a1) t) Tau
(inc_pc (update_result r <| poison := v1.poison; value := v2 |> s))) ∧
(∀prog s r c t a1 a2 v3 v1 v2.
eval s a1 v1 ∧
eval s a2 v2 ∧
do_icmp c v1 v2 = Some v3
⇒
step_instr prog s
(Icmp r c t a1 a2) Tau
(inc_pc (update_result r v3 s))) ∧
(∀prog s r t fname targs d vs.
alookup prog fname = Some d ∧
list_rel (eval s o snd) targs vs
⇒
step_instr prog s
(Call r t fname targs) Tau
(* Jump to the entry block of the function which has no phis *)
<| ip := <| f := fname; b := None; i := Offset 0 |>;
locals := alist_to_fmap (zip (map snd d.params, vs));
globals := s.globals;
stack :=
<| ret := s.ip with i := inc_bip s.ip.i;
saved_locals := s.locals;
result_var := r;
stack_allocs := [] |> :: s.stack;
heap := s.heap;
status := s.status |>)(* ∧
(* TODO *)
(step_instr prog s (Cxa_allocate_exn r a) Tau s) ∧
(* TODO *)
(step_instr prog s (Cxa_throw a1 a2 a3) Tau s) ∧
(* TODO *)
(step_instr prog s (Cxa_begin_catch r a) Tau s) ∧
(* TODO *)
(step_instr prog s (Cxa_end_catch) Tau s) ∧
(* TODO *)
(step_instr prog s (Cxa_get_exception_ptr r a) Tau s)
*)
End
Inductive get_instr:
(∀prog ip idx b d.
alookup prog ip.f = Some d ∧
alookup d.blocks ip.b = Some b ∧
ip.i = Offset idx ∧
idx < length b.body
⇒
get_instr prog ip (Inl (el idx b.body))) ∧
(∀prog ip from_l phis d b landing.
alookup prog ip.f = Some d ∧
alookup d.blocks ip.b = Some b ∧
ip.i = Phi_ip from_l ∧
b.h = Head phis landing
⇒
get_instr prog ip (Inr (from_l, phis)))
End
Inductive step:
(∀p s l s' i.
get_instr p s.ip (Inl i) ∧
step_instr p s i l s'
⇒
step p s l s') ∧
(* Do the phi assignments in parallel. The manual says "For the purposes of the
* SSA form, the use of each incoming value is deemed to occur on the edge from
* the corresponding predecessor block to the current block (but after any
* definition of an 'invoke' instruction's return value on the same edge)".
* So treat these two as equivalent
* %r1 = phi [0, %l]
* %r2 = phi [%r1, %l]
* and
* %r2 = phi [%r1, %l]
* %r1 = phi [0, %l]
*)
(∀p s updates from_l phis.
get_instr p s.ip (Inr (from_l, phis)) ∧
list_rel (do_phi from_l s) phis updates
⇒
step p s Tau (inc_pc (s with locals := s.locals |++ updates)))
End
Inductive sem_step:
(∀p s1 l s2.
step p s1 l s2 ∧
s1.status = Partial
⇒
sem_step p s1 l s2) ∧
(∀p s1.
(¬∃l s2. step p s1 l s2) ∧
s1.status = Partial
⇒
sem_step p s1 Error (s1 with status := Stuck))
End
(* The semantics of a program will be the finite traces of stores to global
* variables.
* *)
Definition sem_def:
sem p s1 =
{ ((last path).status, filter ($≠ Tau) l) | (path, l) |
toList (labels path) = Some l ∧ finite path ∧ okpath (sem_step p) path ∧ first path = s1 }
End
(* ----- Invariants on state ----- *)
(* All global variables are allocated in non-freeable memory *)
Definition globals_ok_def:
globals_ok s ⇔
∀g n w.
flookup s.globals g = Some (n, w)
⇒
is_allocated (Interval F (w2n w) (w2n w + n)) s.heap
End
(* Instruction pointer points to an instruction *)
Definition ip_ok_def:
ip_ok p ip ⇔
∃dec block.
alookup p ip.f = Some dec ∧ alookup dec.blocks ip.b = Some block ∧
((∃idx. ip.i = Offset idx ∧ idx < length block.body) ∨
(∃from_l. ip.i = Phi_ip from_l ∧ block.h ≠ Entry ∧ alookup dec.blocks from_l ≠ None))
End
Definition instr_to_labs_def:
(instr_to_labs (Br _ l1 l2) = [l1; l2]) ∧
(instr_to_labs _ = [])
End
Definition phi_contains_label_def:
phi_contains_label l (Phi _ _ ls) ⇔ alookup ls l ≠ None
End
Definition prog_ok_def:
prog_ok p ⇔
((* All blocks end with terminators and terminators only appear at the end.
* All labels mentioned in branches actually exist, and target non-entry
* blocks, whose phi nodes have entries for the label of the block that the
* branch is from. *)
∀fname dec bname block.
alookup p fname = Some dec ∧
alookup dec.blocks bname = Some block
⇒
block.body ≠ [] ∧ terminator (last block.body) ∧
every (λi. ¬terminator i) (front block.body) ∧
every (λlab. ∃b phis land. alookup dec.blocks (Some lab) = Some b ∧
b.h = Head phis land ∧ every (phi_contains_label bname) phis)
(instr_to_labs (last block.body))) ∧
((* All functions have an entry block *)
∀fname dec.
alookup p fname = Some dec ⇒
∃block. alookup dec.blocks None = Some block ∧ block.h = Entry) ∧
((* All non-entry blocks have a proper header, and entry blocks don't *)
∀fname dec.
alookup p fname = Some dec ⇒
every (\b. fst b = None ⇔ (snd b).h = Entry) dec.blocks) ∧
((* The blocks in a definition have distinct labels.*)
every (\(fname,dec). all_distinct (map fst dec.blocks)) p) ∧
(* There is a main function *)
(∃dec. alookup p (Fn "main") = Some dec) ∧
(* No phi instruction assigns the same register twice *)
(∀ip from_l phis.
get_instr p ip (Inr (from_l, phis)) ⇒
all_distinct (map (λp. case p of Phi r _ _ => r) phis)) ∧
(* No duplicate function names *)
(all_distinct (map fst p))
End
(* All call frames have a good return address, and the stack allocations of the
* frame are all in freeable memory *)
Definition frame_ok_def:
frame_ok p s f ⇔
ip_ok p f.ret ∧
every (λn. ∃start stop. n = A start ∧ Interval T start stop ∈ s.heap.allocations) f.stack_allocs
End
(* The frames are all of, and no two stack allocations have the same address *)
Definition stack_ok_def:
stack_ok p s ⇔
every (frame_ok p s) s.stack ∧
all_distinct (flat (map (λf. f.stack_allocs) s.stack))
End
Definition state_invariant_def:
state_invariant p s ⇔
ip_ok p s.ip ∧ heap_ok s.heap ∧ globals_ok s ∧ stack_ok p s
End
(* ----- Initial state ----- *)
(* The initial state contains allocations for the initialised global variables *)
Definition is_init_state_def:
is_init_state s (global_init : glob_var |-> ty # v) ⇔
s.ip.f = Fn "main" ∧
s.ip.b = None ∧
s.ip.i = Offset 0 ∧
s.locals = fempty ∧
s.stack = [] ∧
s.status = Partial ∧
globals_ok s ∧
heap_ok s.heap ∧
fdom s.globals = fdom global_init ∧
s.heap.valid_addresses = { A n | n < 256 ** pointer_size } ∧
(* The initial allocations for globals are not freeable *)
s.heap.allocations ⊆ { Interval F start stop | T } ∧
(* The heap starts with the initial values of the globals written to their
* addresses *)
∀g w t v n.
flookup s.globals g = Some (n, w) ∧ flookup global_init g = Some (t,v) ⇒
∃bytes.
get_bytes s.heap (Interval F (w2n w) (w2n w + sizeof t)) = map (λb. (F,b)) bytes ∧
bytes_to_llvm_value t bytes = (v, [])
End
export_theory();