sledge/semantics/llvm_ssaScript.sml (1,752 lines of code) (raw):
(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Define SSA form and the concept of variable liveness, and then show how SSA
* simplifies it *)
open HolKernel boolLib bossLib Parse;
open pred_setTheory listTheory rich_listTheory pairTheory arithmeticTheory;
open alistTheory set_relationTheory;
open settingsTheory miscTheory llvmTheory llvm_propTheory;
new_theory "llvm_ssa";
numLib.prefer_num ();
(* ----- The syntactic things we need to know about a program, just for this file ---- *)
Definition loc_prog_ok_def:
loc_prog_ok p ⇔
(∀fname dec bname block.
alookup p fname = Some dec ∧
alookup dec.blocks bname = Some block ⇒
block.body ≠ [] ∧ terminator (last block.body) ∧
every (λi. ~terminator i) (front block.body)) ∧
(∀fname dec.
alookup p fname = Some dec ⇒
every (λb. fst b = None ⇔ (snd b).h = Entry) dec.blocks) ∧
(every (\(fname, dec). all_distinct (map fst dec.blocks)) p)
End
(* ----- Static paths through a program ----- *)
Definition inc_pc_def:
inc_pc ip = ip with i := inc_bip ip.i
End
(* The set of program counters the given instruction and starting point can
* immediately reach, within a function *)
Definition instr_next_ips_def:
(instr_next_ips (Ret _) ip = {}) ∧
(instr_next_ips (Br _ l1 l2) ip =
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧
(instr_next_ips (Invoke _ _ _ _ l1 l2) ip =
{ <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧
(instr_next_ips Unreachable ip = {}) ∧
(instr_next_ips (Exit _) ip = {}) ∧
(instr_next_ips (Sub _ _ _ _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Extractvalue _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Insertvalue _ _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Alloca _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Load _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Store _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Gep _ _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Cast _ _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Icmp _ _ _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Call _ _ _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Cxa_allocate_exn _ _) ip = { inc_pc ip }) ∧
(* TODO: revisit throw when dealing with exceptions *)
(instr_next_ips (Cxa_throw _ _ _) ip = { }) ∧
(instr_next_ips (Cxa_begin_catch _ _) ip = { inc_pc ip }) ∧
(instr_next_ips (Cxa_end_catch) ip = { inc_pc ip }) ∧
(instr_next_ips (Cxa_get_exception_ptr _ _) ip = { inc_pc ip })
End
Inductive next_ips:
(∀prog ip i l i2.
get_instr prog ip (Inl i) ∧
l ∈ instr_next_ips i ip ∧
get_instr prog l i2
⇒
next_ips prog ip l) ∧
(∀prog ip from_l phis i2.
get_instr prog ip (Inr (from_l, phis)) ∧
get_instr prog (inc_pc ip) i2
⇒
next_ips prog ip (inc_pc ip))
End
(* The path is a list of program counters that represent a statically feasible
* path through a function *)
Inductive good_path:
(∀prog. good_path prog []) ∧
(∀prog ip i.
get_instr prog ip i
⇒
good_path prog [ip]) ∧
(∀prog path ip1 ip2.
ip2 ∈ next_ips prog ip1 ∧
good_path prog (ip2::path)
⇒
good_path prog (ip1::ip2::path))
End
Theorem next_ips_same_func:
∀prog ip1 ip2. ip2 ∈ next_ips prog ip1 ⇒ ip1.f = ip2.f
Proof
rw [next_ips_cases, IN_DEF, get_instr_cases, inc_pc_def, inc_bip_def] >> rw [] >>
Cases_on `el idx b.body` >> fs [instr_next_ips_def, inc_pc_def, inc_bip_def]
QED
Theorem good_path_same_func:
∀prog path. good_path prog path ⇒ ∀ip1 ip2. mem ip1 path ∧ mem ip2 path ⇒ ip1.f = ip2.f
Proof
ho_match_mp_tac good_path_ind >> rw [] >>
metis_tac [next_ips_same_func]
QED
Theorem good_path_prefix:
∀prog path path'. good_path prog path ∧ path' ≼ path ⇒ good_path prog path'
Proof
Induct_on `path'` >> rw []
>- simp [Once good_path_cases] >>
pop_assum mp_tac >> CASE_TAC >> rw [] >>
qpat_x_assum `good_path _ _` mp_tac >>
simp [Once good_path_cases] >> rw [] >> fs []
>- (simp [Once good_path_cases] >> metis_tac []) >>
first_x_assum drule >> rw [] >>
simp [Once good_path_cases] >>
Cases_on `path'` >> fs [next_ips_cases, IN_DEF] >>
metis_tac []
QED
Theorem good_path_append:
!prog p1 p2.
good_path prog (p1++p2) ⇔
good_path prog p1 ∧ good_path prog p2 ∧
(p1 ≠ [] ∧ p2 ≠ [] ⇒ HD p2 ∈ next_ips prog (last p1))
Proof
Induct_on `p1` >> rw []
>- metis_tac [good_path_rules] >>
Cases_on `p1` >> Cases_on `p2` >> rw []
>- metis_tac [good_path_rules]
>- (
simp [Once good_path_cases] >>
metis_tac [good_path_rules, next_ips_cases, IN_DEF])
>- metis_tac [good_path_rules] >>
rename1 `ip1::ip2::(ips1++ip3::ips2)` >>
first_x_assum (qspecl_then [`prog`, `[ip3]++ips2`] mp_tac) >>
rw [] >> simp [Once good_path_cases, LAST_DEF] >> rw [] >>
eq_tac >> rw []
>- metis_tac [good_path_rules]
>- (qpat_x_assum `good_path _ [_;_]` mp_tac >> simp [Once good_path_cases])
>- metis_tac [good_path_rules, next_ips_cases, IN_DEF]
>- metis_tac [good_path_rules]
>- (qpat_x_assum `good_path _ (ip1::ip2::ips1)` mp_tac >> simp [Once good_path_cases])
>- (qpat_x_assum `good_path _ (ip1::ip2::ips1)` mp_tac >> simp [Once good_path_cases])
QED
(* ----- Helper functions to get registers out of instructions ----- *)
Definition arg_to_regs_def:
(arg_to_regs (Constant _) = {}) ∧
(arg_to_regs (Variable r) = {r})
End
(* The registers that an instruction uses *)
Definition instr_uses_def:
(instr_uses (Ret (_, a)) = arg_to_regs a) ∧
(instr_uses (Br a _ _) = arg_to_regs a) ∧
(instr_uses (Invoke _ _ a targs _ _) =
arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
(instr_uses Unreachable = {}) ∧
(instr_uses (Exit a) = arg_to_regs a) ∧
(instr_uses (Sub _ _ _ _ a1 a2) =
arg_to_regs a1 ∪ arg_to_regs a2) ∧
(instr_uses (Extractvalue _ (_, a) _) = arg_to_regs a) ∧
(instr_uses (Insertvalue _ (_, a1) (_, a2) _) =
arg_to_regs a1 ∪ arg_to_regs a2) ∧
(instr_uses (Alloca _ _ (_, a)) = arg_to_regs a) ∧
(instr_uses (Load _ _ (_, a)) = arg_to_regs a) ∧
(instr_uses (Store (_, a1) (_, a2)) =
arg_to_regs a1 ∪ arg_to_regs a2) ∧
(instr_uses (Gep _ _ (_, a) targs) =
arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
(instr_uses (Cast _ _ (_, a) _) = arg_to_regs a) ∧
(instr_uses (Icmp _ _ _ a1 a2) =
arg_to_regs a1 ∪ arg_to_regs a2) ∧
(instr_uses (Call _ _ _ targs) =
BIGUNION (set (map (arg_to_regs o snd) targs))) ∧
(instr_uses (Cxa_allocate_exn _ a) = arg_to_regs a) ∧
(instr_uses (Cxa_throw a1 a2 a3) =
arg_to_regs a1 ∪ arg_to_regs a2 ∪ arg_to_regs a3) ∧
(instr_uses (Cxa_begin_catch _ a) = arg_to_regs a) ∧
(instr_uses (Cxa_end_catch) = { }) ∧
(instr_uses (Cxa_get_exception_ptr _ a) = arg_to_regs a)
End
Definition phi_uses_def:
phi_uses from_l (Phi _ _ entries) =
case alookup entries from_l of
| None => {}
| Some a => arg_to_regs a
End
Inductive uses:
(∀prog ip i r.
get_instr prog ip (Inl i) ∧
r ∈ instr_uses i
⇒
uses prog ip r) ∧
(∀prog ip from_l phis r.
get_instr prog ip (Inr (from_l, phis)) ∧
r ∈ BIGUNION (set (map (phi_uses from_l) phis))
⇒
uses prog ip r)
End
Definition cidx_to_num_def:
(cidx_to_num (IntC _ n) = Num (ABS n)) ∧
(cidx_to_num _ = 0)
End
(* Convert index lists as for GEP into number lists, for the purpose of
* calculating types. Everything goes to 0 but for positive integer constants,
* because those things can't be used to index anything but arrays, and the type
* for the array contents doesn't depend on the index's value. *)
Definition idx_to_num_def:
(idx_to_num (_, (Constant (IntC _ n))) = Num (ABS n)) ∧
(idx_to_num (_, _) = 0)
End
(* The registers that an instruction assigns *)
Definition instr_assigns_def:
(instr_assigns (Invoke r t _ _ _ _) = {(r,t)}) ∧
(instr_assigns (Sub r _ _ t _ _) = {(r,t)}) ∧
(instr_assigns (Extractvalue r (t,_) idx) = {(r,THE (extract_type t (map cidx_to_num idx)))}) ∧
(instr_assigns (Insertvalue r (t,_) _ _) = {(r, t)}) ∧
(instr_assigns (Alloca r t _) = {(r,PtrT t)}) ∧
(instr_assigns (Load r t _) = {(r,t)}) ∧
(instr_assigns (Gep r t _ idx) = {(r,PtrT (THE (extract_type t (map idx_to_num idx))))}) ∧
(instr_assigns (Cast r _ _ t) = {(r,t)}) ∧
(instr_assigns (Icmp r _ _ _ _) = {(r, IntT W1)}) ∧
(instr_assigns (Call r t _ _) = {(r,t)}) ∧
(instr_assigns (Cxa_allocate_exn r _) = {(r,ARB)}) ∧
(instr_assigns (Cxa_begin_catch r _) = {(r,ARB)}) ∧
(instr_assigns (Cxa_get_exception_ptr r _) = {(r,ARB)}) ∧
(instr_assigns _ = {})
End
Definition phi_assigns_def:
phi_assigns (Phi r t _) = (r,t)
End
Inductive assigns:
(∀prog ip i r.
get_instr prog ip (Inl i) ∧
r ∈ instr_assigns i
⇒
assigns prog ip r) ∧
(∀prog ip from_l phis r.
get_instr prog ip (Inr (from_l, phis)) ∧
r ∈ set (map phi_assigns phis)
⇒
assigns prog ip r)
End
(* ----- SSA form ----- *)
Definition entry_ip_def:
entry_ip fname = <| f := fname; b := None; i := Offset 0 |>
End
(* Equivalent instruction pointers, since we don't want to distinguish pointers
* to headers that have different from labels *)
Definition ip_equiv_def:
ip_equiv ip1 ip2 ⇔
ip1.f = ip2.f ∧ ip1.b = ip2.b ∧
(ip1.i ≠ ip2.i ⇒ ∃l1 l2. ip1.i = Phi_ip l1 ∧ ip2.i = Phi_ip l2)
End
Definition reachable_def:
reachable prog ip ⇔
∃path. good_path prog (entry_ip ip.f :: path) ∧ ip_equiv (last (entry_ip ip.f :: path)) ip
End
(* To get to ip2 from the entry, you must go through ip1 *)
Definition dominates_def:
dominates prog ip1 ip2 ⇔
∀path.
good_path prog (entry_ip ip2.f :: path) ∧
ip_equiv (last (entry_ip ip2.f :: path)) ip2 ⇒
∃ip1'. ip_equiv ip1 ip1' ∧ mem ip1' (front (entry_ip ip2.f :: path))
End
Definition is_ssa_def:
is_ssa prog ⇔
(* Operate function by function *)
(∀fname.
(* No register is assigned in two different instructions *)
(∀r ip1 ip2.
r ∈ image fst (assigns prog ip1) ∧ r ∈ image fst (assigns prog ip2) ∧
ip1.f = fname ∧ ip2.f = fname
⇒
ip_equiv ip1 ip2)) ∧
(* Each use is dominated by its assignment *)
(∀ip1 r. r ∈ uses prog ip1 ⇒
∃ip2. ip2.f = ip1.f ∧ r ∈ image fst (assigns prog ip2) ∧ dominates prog ip2 ip1) ∧
(* All of the blocks are reachable. Otherwise, we could have dead code that
* violates SSA, and this will wreck our treatment of a function body as a
* list of blocks in dominator tree order *)
(∀ip i. get_instr prog ip i ⇒ reachable prog ip)
End
Theorem ip_equiv_sym:
∀ip1 ip2. ip_equiv ip1 ip2 ⇔ ip_equiv ip2 ip1
Proof
rw [ip_equiv_def] >> metis_tac []
QED
Theorem ip_equiv_refl:
∀ip. ip_equiv ip ip
Proof
rw [ip_equiv_def]
QED
Theorem ip_equiv_trans:
∀ip1 ip2 ip3. ip_equiv ip1 ip2 ∧ ip_equiv ip2 ip3 ⇒ ip_equiv ip1 ip3
Proof
rw [ip_equiv_def] >> metis_tac []
QED
Theorem ip_equiv_assigns:
∀prog ip1 ip2 rt.
ip_equiv ip1 ip2 ∧ rt ∈ assigns prog ip1 ⇒ rt ∈ assigns prog ip2
Proof
rw [ip_equiv_def, assigns_cases, IN_DEF] >>
Cases_on `ip1 = ip2` >> rw []
>- metis_tac []
>- (fs [pc_component_equality] >> fs [get_instr_cases] >> fs [])
>- metis_tac []
>- (
fs [pc_component_equality] >>
fs [get_instr_cases, inc_pc_def, inc_bip_def, PULL_EXISTS] >>
rw [] >> rfs [inc_bip_def] >>
metis_tac [optionTheory.SOME_11])
QED
Theorem ip_equiv_next:
∀prog ip1 ip2 ip3.
ip_equiv ip1 ip2 ∧ ip3 ∈ next_ips prog ip1 ⇒
ip3 ∈ next_ips prog ip2
Proof
rw [ip_equiv_def, next_ips_cases, IN_DEF] >>
Cases_on `ip1 = ip2` >> rw []
>- metis_tac []
>- (fs [pc_component_equality] >> fs [get_instr_cases] >> fs [])
>- metis_tac []
>- (
fs [pc_component_equality] >>
fs [get_instr_cases, inc_pc_def, inc_bip_def, PULL_EXISTS] >>
rw [] >> rfs [inc_bip_def] >>
metis_tac [optionTheory.SOME_11])
QED
Theorem ip_equiv_dominates:
∀prog ip1 ip2 ip3.
dominates prog ip1 ip2 ∧ ip_equiv ip2 ip3 ⇒ dominates prog ip1 ip3
Proof
rw [dominates_def] >> metis_tac [ip_equiv_def]
QED
Theorem ip_equiv_dominates2:
∀prog ip1 ip2 ip3.
dominates prog ip1 ip2 ∧ ip_equiv ip1 ip3 ⇒ dominates prog ip3 ip2
Proof
rw [dominates_def] >> metis_tac [ip_equiv_def]
QED
Theorem ip_equiv_next_ips:
∀p i ip1 ip2. ip_equiv ip1 ip2 ∧ i ∈ next_ips p ip1 ⇒ i ∈ next_ips p ip2
Proof
rw [ip_equiv_def] >>
Cases_on `ip1.i = ip2.i`
>- metis_tac [pc_component_equality] >>
fs [] >> rw [] >> rfs [] >>
fs [next_ips_cases, IN_DEF, inc_pc_def, inc_bip_def] >>
fs [get_instr_cases] >> rw [] >> fs [] >>
rw [pc_component_equality, PULL_EXISTS] >>
rfs [] >> rw [] >> fs [inc_bip_def]
QED
Theorem dominates_trans:
∀prog ip1 ip2 ip3.
dominates prog ip1 ip2 ∧ dominates prog ip2 ip3 ⇒ dominates prog ip1 ip3
Proof
rw [dominates_def] >> simp [FRONT_DEF] >> rw []
>- (first_x_assum (qspec_then `[]` mp_tac) >> rw []) >>
first_x_assum drule >> rw [] >>
qpat_x_assum `mem _ (front _)` mp_tac >>
simp [Once MEM_EL] >> rw [] >> fs [EL_FRONT] >>
first_x_assum (qspec_then `take n path` mp_tac) >> simp [LAST_DEF] >>
simp [Once ip_equiv_sym] >>
rw [] >> fs [entry_ip_def]
>- (
fs [Once good_path_cases, ip_equiv_def] >> rw [] >>
fs [next_ips_cases, IN_DEF] >> metis_tac [])
>- (
fs [Once good_path_cases, ip_equiv_def] >> rw [] >>
fs [next_ips_cases, IN_DEF] >> metis_tac []) >>
rfs [EL_CONS] >>
`?m. n = Suc m` by (Cases_on `n` >> rw []) >>
rw [] >> rfs [] >>
`(el m path).f = (last (<|f := ip3.f; b := None; i := Offset 0|> ::path)).f`
by (
irule good_path_same_func >>
qexists_tac `<| f:= ip3.f; b := NONE; i := Offset 0|> :: path` >>
qexists_tac `prog` >>
conj_tac >- rw [EL_MEM] >>
metis_tac [MEM_LAST]) >>
`(el m path).f = ip3.f` by metis_tac [ip_equiv_def] >>
fs [] >> qpat_x_assum `_ ⇒ _` mp_tac >> impl_tac
>- (
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [] >>
metis_tac [take_is_prefix, ip_equiv_def]) >>
rw [] >> drule MEM_FRONT >> rw []
>- (qexists_tac `<|f := ip3.f; b := None; i := Offset 0|>` >> fs [ip_equiv_def]) >>
fs [MEM_EL, LENGTH_FRONT] >> rfs [EL_TAKE] >> rw [] >>
HINT_EXISTS_TAC >> rw [] >>
disj2_tac >> qexists_tac `n'` >> rw [] >>
irule (GSYM EL_FRONT) >>
rw [NULL_EQ, LENGTH_FRONT]
QED
Theorem dominates_unreachable:
∀prog ip1 ip2. ¬reachable prog ip2 ⇒ dominates prog ip1 ip2
Proof
rw [dominates_def, reachable_def] >>
metis_tac []
QED
Theorem dominates_antisym_lem:
∀prog ip1 ip2. dominates prog ip1 ip2 ∧ dominates prog ip2 ip1 ⇒ ¬reachable prog ip1
Proof
rw [dominates_def, reachable_def] >> CCONTR_TAC >> fs [] >>
Cases_on `ip_equiv ip1 (entry_ip ip1.f)` >> fs []
>- (
first_x_assum (qspec_then `[]` mp_tac) >> rw [] >>
fs [Once good_path_cases, IN_DEF, next_ips_cases] >>
metis_tac [ip_equiv_sym]) >>
`path ≠ []` by (Cases_on `path` >> fs [] >> metis_tac [ip_equiv_sym]) >>
`(OLEAST n. n < length path ∧ ip_equiv (el n path) ip1) ≠ None`
by (
rw [whileTheory.OLEAST_EQ_NONE] >>
qexists_tac `PRE (length path)` >> rw [] >>
fs [LAST_DEF, LAST_EL] >>
Cases_on `path` >> fs []) >>
qabbrev_tac `path1 = splitAtPki (\n ip. ip_equiv ip ip1) (\x y. x++[HD y]) path` >>
first_x_assum (qspec_then `path1` mp_tac) >>
simp [] >>
`IS_PREFIX path path1`
by (
unabbrev_all_tac >> rw [splitAtPki_EQN] >>
CASE_TAC >> rw [] >>
fs [whileTheory.OLEAST_EQ_SOME] >>
rw [GSYM SNOC_APPEND, SNOC_EL_TAKE, HD_DROP] >>
metis_tac [take_is_prefix]) >>
conj_asm1_tac >> rw []
>- (irule good_path_prefix >> HINT_EXISTS_TAC >> rw [])
>- (
unabbrev_all_tac >> rw [splitAtPki_EQN] >>
CASE_TAC >> rw [] >>
fs [whileTheory.OLEAST_EQ_SOME] >>
rw [LAST_DEF, HD_DROP]) >>
`path1 ≠ []`
by (fs [Abbr `path1`, splitAtPki_EQN] >> CASE_TAC >> rw []) >>
simp [GSYM SNOC_APPEND, FRONT_SNOC, FRONT_DEF] >>
CCONTR_TAC >> fs [MEM_EL]
>- (
first_x_assum (qspec_then `[]` mp_tac) >>
fs [entry_ip_def, Once good_path_cases, IN_DEF, next_ips_cases] >>
fs [ip_equiv_def] >>
metis_tac []) >>
rw [] >> rfs [] >>
rename [`n1 < length (front _)`, `ip_equiv (el n _) _`,
`ip_equiv _ (el n1 (front _))`] >>
first_x_assum (qspec_then `take (Suc n1) path1` mp_tac) >> rw []
>- (
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [entry_ip_def]
>- (
`(el n1 (front path1)).f = (entry_ip ip1.f).f` suffices_by fs [ip_equiv_def, entry_ip_def] >>
irule good_path_same_func >>
qexists_tac `entry_ip ip1.f::path1` >>
qexists_tac `prog` >> rw [EL_MEM, entry_ip_def] >>
rw [MEM_EL] >> disj2_tac >>
qexists_tac `n1` >> rw [] >> rfs [LENGTH_FRONT] >>
irule EL_FRONT >> rw [NULL_EQ, LENGTH_FRONT]) >>
metis_tac [IS_PREFIX_APPEND3, take_is_prefix, IS_PREFIX_TRANS])
>- (
rfs [LENGTH_FRONT] >> rw [LAST_DEF] >>
metis_tac [EL_FRONT, NULL_EQ, ip_equiv_sym, LENGTH_FRONT]) >>
rw [METIS_PROVE [] ``~x ∨ y ⇔ (x ⇒ y)``] >>
simp [EL_FRONT] >>
rfs [LENGTH_TAKE, LENGTH_FRONT] >>
rename [`n2 < Suc _`] >>
Cases_on `¬(0 < n2)` >> rw [EL_CONS]
>- (fs [entry_ip_def] >> CCONTR_TAC >> fs [] >> fs [ip_equiv_def]) >>
fs [EL_TAKE, Abbr `path1`, splitAtPki_EQN] >>
CASE_TAC >> rw [] >> fs []
>- metis_tac [] >>
fs [whileTheory.OLEAST_EQ_SOME] >>
rfs [LENGTH_TAKE] >>
`PRE n2 < x` by decide_tac >>
first_x_assum drule >>
rfs [HD_DROP, LAST_DEF] >>
rw [EL_TAKE, EL_APPEND_EQN] >>
metis_tac [ip_equiv_sym]
QED
Theorem dominates_antisym:
∀prog ip1 ip2. reachable prog ip1 ∧ dominates prog ip1 ip2 ⇒ ¬dominates prog ip2 ip1
Proof
metis_tac [dominates_antisym_lem]
QED
Theorem dominates_irrefl:
∀prog ip. reachable prog ip ⇒ ¬dominates prog ip ip
Proof
metis_tac [dominates_antisym]
QED
Definition bip_less_def:
(bip_less (Phi_ip _) (Offset _) ⇔ T) ∧
(bip_less (Offset m) (Offset n) ⇔ m < n) ∧
(bip_less _ _ ⇔ F)
End
Theorem bip_less_tri:
∀ip1 ip2. ip1.f = ip2.f ∧ ip1.b = ip2.b ⇒ bip_less ip1.i ip2.i ∨ bip_less ip2.i ip1.i ∨ ip_equiv ip1 ip2
Proof
rw [] >> Cases_on `ip1.i` >> Cases_on `ip2.i`>> rw [bip_less_def, ip_equiv_def]
QED
Theorem ip_equiv_less:
∀ip1 ip2 ip3.
ip_equiv ip2 ip3 ∧
bip_less ip1.i ip2.i
⇒
bip_less ip1.i ip3.i
Proof
rw [ip_equiv_def] >>
Cases_on `ip1.i` >> Cases_on `ip2.i` >> Cases_on `ip3.i` >> fs [bip_less_def]
QED
Theorem ip_equiv_less2:
∀ip1 ip2 ip3.
ip_equiv ip2 ip3 ∧
bip_less ip2.i ip1.i
⇒
bip_less ip3.i ip1.i
Proof
rw [ip_equiv_def] >>
Cases_on `ip1.i` >> Cases_on `ip2.i` >> Cases_on `ip3.i` >> fs [bip_less_def]
QED
Triviality front_cons_snoc:
∀x y z. front (x::SNOC y z) = x::z
Proof
Induct_on `z` >> fs [SNOC_APPEND]
QED
Triviality last_cons_snoc:
∀x y z. last (x::SNOC y z) = y
Proof
Induct_on `z` >> fs []
QED
Triviality prefix_snoc:
∀x y. x ≼ SNOC y x
Proof
Induct_on `x` >> fs []
QED
Triviality bip_lem:
bip_less i1 i2 ⇒ ?n. i2 = Offset n
Proof
Cases_on `i1` >> Cases_on `i2` >> fs [bip_less_def]
QED
Theorem next_ips_prev_entry:
∀prog ip1 ip2 ip3 f.
(∀fname dec.
alookup prog fname = Some dec ⇒
every (λb. fst b = None ⇔ (snd b).h = Entry) dec.blocks) ⇒
ip3 ∈ next_ips prog (entry_ip f) ∧
(∃i. get_instr prog ip1 i) ∧
ip1.f = ip2.f ∧
ip1.b = ip2.b ∧
bip_less ip1.i ip2.i ∧
ip_equiv ip3 ip2
⇒
ip1 = entry_ip f
Proof
rw [IN_DEF, next_ips_cases, get_instr_cases, entry_ip_def, ip_equiv_def] >>
rw [] >>
Cases_on `HD b.body` >> fs [instr_next_ips_def] >>
rw [] >> fs [inc_pc_def, inc_bip_def] >> rw [] >>
fs [] >> rw [pc_component_equality] >>
rfs [bip_less_def] >> rw [] >>
res_tac >>
fs [EVERY_MEM] >>
metis_tac [blockHeader_distinct, FST, ALOOKUP_MEM, SND, EVERY_MEM, bip_lem, bip_distinct]
QED
Theorem next_ips_prev_less:
ip2 ∈ next_ips prog ip3 ∧
(∃i. get_instr prog ip1 i) ∧
ip1.f = ip2.f ∧
ip1.b = ip2.b ∧
~ip_equiv ip1 ip3 ∧
bip_less ip1.i ip2.i
⇒
ip3.b = ip2.b ∧ bip_less ip1.i ip3.i
Proof
rw [IN_DEF, next_ips_cases, get_instr_cases, ip_equiv_def] >>
rw [] >>
Cases_on `el idx b.body` >> fs [instr_next_ips_def] >>
rw [] >> fs [inc_pc_def, inc_bip_def] >> rw [bip_less_def] >>
imp_res_tac bip_lem >>
fs [] >>
rfs [bip_less_def, inc_bip_def] >> rw [] >>
fs [pc_component_equality] >> rfs []
QED
Theorem good_path_end_step:
good_path prog (entry_ip f::SNOC ip2 (p1 ++ [ip3]))
⇒
ip2 ∈ next_ips prog ip3
Proof
rw [Once good_path_cases] >>
qpat_x_assum `_ = _` (mp_tac o GSYM) >>
rw [] >> fs [good_path_append] >>
Cases_on `p1` >> fs [Once good_path_cases]
QED
Theorem same_block_dominates:
∀prog.
(∀fname dec.
alookup prog fname = Some dec ⇒
every (λb. fst b = None ⇔ (snd b).h = Entry) dec.blocks) ⇒
∀ip1 ip2.
ip1.f = ip2.f ∧ ip1.b = ip2.b ∧ (∃i. get_instr prog ip1 i) ⇒ bip_less ip1.i ip2.i ⇒ dominates prog ip1 ip2
Proof
ntac 2 strip_tac >>
simp [dominates_def, PULL_FORALL] >>
ntac 3 gen_tac >>
Q.ID_SPEC_TAC `ip2` >>
Q.ID_SPEC_TAC `path` >>
ho_match_mp_tac SNOC_INDUCT >> rw []
>- (
simp [Once good_path_cases, ip_equiv_def] >>
Cases_on `ip1.i` >> Cases_on `ip2.i` >> fs [bip_less_def] >>
rw [entry_ip_def, pc_component_equality] >>
CCONTR_TAC >> fs [] >> rw [] >> fs [get_instr_cases] >> rw [] >>
first_x_assum drule >> simp [EXISTS_MEM] >>
qexists_tac `(ip1.b, b)` >> rw [] >>
metis_tac [optionTheory.SOME_11, ALOOKUP_MEM]) >>
simp [front_cons_snoc] >> fs [last_cons_snoc] >> rw [] >>
`good_path prog (entry_ip ip2.f::path)`
by (irule good_path_prefix >> HINT_EXISTS_TAC >> rw [prefix_snoc]) >>
Cases_on `path = []` >> rw []
>- (
fs [Once good_path_cases] >>
fs [Once good_path_cases] >>
metis_tac [next_ips_prev_entry, ip_equiv_refl]) >>
`?p1 ip3. path = p1 ++ [ip3]` by metis_tac [SNOC_CASES, SNOC_APPEND] >>
fs [] >> rw [] >>
rename1 `ip_equiv ip2' _` >>
`ip3.f = ip2'.f`
by (
irule good_path_same_func >>
qexists_tac `entry_ip ip2.f::SNOC ip2' (p1 ++ [ip3])` >>
rw [] >> metis_tac []) >>
Cases_on `ip_equiv ip1 ip3` >> rw []
>- metis_tac [] >>
`ip3.b = ip2'.b ∧ bip_less ip1.i ip3.i`
by (
drule good_path_end_step >> strip_tac >>
irule next_ips_prev_less >>
fs [] >> rw []
>- fs [ip_equiv_def]
>- fs [ip_equiv_def]
>- metis_tac []
>- metis_tac [ip_equiv_less, ip_equiv_sym]) >>
first_x_assum (qspec_then `ip3` mp_tac) >> simp [] >>
impl_tac
>- metis_tac [ip_equiv_def] >>
impl_tac >> rw []
>- fs [ip_equiv_def]
>- rw [LAST_DEF, ip_equiv_def] >>
qexists_tac `ip1'` >> rw [] >>
drule MEM_FRONT >> fs [ip_equiv_def]
QED
Theorem next_ips_still_leq:
ip2 ∈ next_ips prog ip1 ∧
ip2.f = ip1.f ∧
ip2.f = ip3.f ∧
ip1.b = ip3.b ∧
(∀inst. get_instr prog ip1 (Inl inst) ⇒ ~terminator inst) ∧
bip_less ip1.i ip3.i
⇒
bip_less ip2.i ip3.i ∧ ip2.b = ip1.b ∨ ip2 = ip3
Proof
rw [IN_DEF, next_ips_cases] >> rfs []
>- (
fs [get_instr_cases] >> rw [] >> rfs [] >> rw [] >> fs [] >>
Cases_on `el idx b.body` >> fs [instr_next_ips_def] >> rw [] >> fs [inc_pc_def] >>
rw [] >> rfs [inc_bip_def] >>
Cases_on `ip3.i` >> fs [bip_less_def, pc_component_equality] >>
rw [] >> fs [terminator_def])
>- (
fs [get_instr_cases, inc_pc_def] >> rw [] >> rfs [inc_bip_def] >> rw [pc_component_equality] >>
Cases_on `ip3.i` >> fs [bip_less_def])
QED
Theorem good_path_find_ip:
∀prog path.
good_path prog path ⇒
∀ip.
loc_prog_ok prog ∧
path ≠ [] ∧
(last path).b ≠ ip.b ∧
ip.f = (HD path).f ∧ ip.b = (HD path).b ∧ bip_less (HD path).i ip.i ∧
(∃inst. get_instr prog ip inst)
⇒
mem ip (front path)
Proof
ho_match_mp_tac good_path_ind >> rw []
>- metis_tac [] >>
drule next_ips_same_func >> rw [] >>
drule next_ips_still_leq >> simp [] >>
disch_then (qspec_then `ip` mp_tac) >> simp [] >>
impl_tac
>- (
rw [get_instr_cases] >>
`every (λi. ~terminator i) (front b.body) ∧ b.body ≠ []` by metis_tac [loc_prog_ok_def] >>
fs [EVERY_MEM, MEM_EL] >>
first_x_assum (qspec_then `el idx b.body` mp_tac) >>
impl_tac
>- (
qexists_tac `idx` >> conj_asm1_tac
>- (
Cases_on `ip.i` >> fs [bip_less_def, LENGTH_FRONT] >>
fs [get_instr_cases] >>
rw [] >> rfs [] >> rw [] >> fs []) >>
metis_tac [EL_FRONT, NULL_EQ]) >>
metis_tac []) >>
rw []
>- metis_tac [next_ips_same_func] >>
Cases_on `path` >> fs []
QED
Theorem dominates_same_block:
∀ip1 ip2 ip3.
loc_prog_ok prog ∧ dominates prog ip1 ip3 ∧ ip1.f = ip2.f ∧ ip1.b = ip2.b ∧
ip3.b ≠ ip1.b ∧ bip_less ip1.i ip2.i ∧ (∃inst. get_instr prog ip2 instr)
⇒
dominates prog ip2 ip3
Proof
rw [dominates_def] >>
first_x_assum drule >> rw [] >>
drule MEM_FRONT >>
REWRITE_TAC [Once MEM_SPLIT] >> strip_tac >>
`good_path prog (ip1'::l2)`
by (
full_simp_tac std_ss [GSYM APPEND_ASSOC] >>
full_simp_tac std_ss [Once good_path_append]) >>
full_simp_tac std_ss [LAST_APPEND] >>
drule good_path_find_ip >>
disch_then (qspec_then `ip2` mp_tac) >>
impl_tac >> rw []
>- (fs [ip_equiv_def] >> metis_tac [])
>- (
`ip1'.f = (entry_ip ip3.f).f` suffices_by (fs [ip_equiv_def]) >>
irule good_path_same_func >>
qexists_tac `entry_ip ip3.f::path` >>
qexists_tac `prog` >> rw_tac std_ss []
>- rw []
>- metis_tac [MEM])
>- fs [ip_equiv_def]
>- metis_tac [ip_equiv_less2]
>- metis_tac []
>- (
qexists_tac `ip2` >> rw [ip_equiv_refl] >>
rw [FRONT_APPEND])
QED
(* ----- Liveness ----- *)
Definition live_def:
live prog ip =
{ r | ∃path.
good_path prog (ip::path) ∧
r ∈ uses prog (last (ip::path)) ∧
∀ip2. ip2 ∈ set (front (ip::path)) ⇒ r ∉ image fst (assigns prog ip2) }
End
Theorem get_instr_live:
∀prog ip instr.
get_instr prog ip instr
⇒
uses prog ip ⊆ live prog ip
Proof
rw [live_def, SUBSET_DEF] >>
qexists_tac `[]` >> rw [Once good_path_cases] >>
qexists_tac `instr` >> simp [] >> metis_tac [IN_DEF]
QED
Triviality set_rw:
∀s P. (∀x. x ∈ s ⇔ P x) ⇔ s = P
Proof
rw [] >> eq_tac >> rw [IN_DEF] >> metis_tac []
QED
Theorem live_gen_kill:
∀prog ip ip'.
live prog ip =
BIGUNION {live prog ip' | ip' | ip' ∈ next_ips prog ip} DIFF image fst (assigns prog ip) ∪ uses prog ip
Proof
rw [live_def, EXTENSION] >> eq_tac >> rw []
>- (
Cases_on `path` >> fs [] >>
rename1 `ip::ip2::path` >>
qpat_x_assum `good_path _ _` mp_tac >> simp [Once good_path_cases] >> rw [] >>
Cases_on `x ∈ uses prog ip` >> fs [] >> simp [set_rw, PULL_EXISTS] >>
qexists_tac `ip2` >> qexists_tac `path` >> rw [])
>- (
fs [] >>
qexists_tac `ip'::path` >> rw [] >>
simp [Once good_path_cases])
>- (
qexists_tac `[]` >> rw [] >>
fs [Once good_path_cases, uses_cases, IN_DEF] >>
metis_tac [])
QED
Theorem ssa_dominates_live_range_lem:
∀prog r ip1 ip2.
is_ssa prog ∧ ip1.f = ip2.f ∧ r ∈ image fst (assigns prog ip1) ∧ r ∈ live prog ip2 ⇒
dominates prog ip1 ip2
Proof
rw [dominates_def, is_ssa_def, live_def] >>
`path ≠ [] ⇒ (last path).f = ip2.f`
by (
rw [] >>
irule good_path_same_func >>
qexists_tac `ip2::path` >> rw [] >>
Cases_on `path` >> fs [MEM_LAST] >> metis_tac []) >>
first_x_assum drule >> rw [] >>
first_x_assum (qspec_then `path'++path` mp_tac) >>
impl_tac
>- (
fs [LAST_DEF] >> rw [] >> fs []
>- (
simp_tac std_ss [GSYM APPEND, good_path_append] >> rw []
>- (
qpat_x_assum `good_path _ (_::_)` mp_tac >>
qpat_x_assum `good_path _ (_::_)` mp_tac >>
simp [Once good_path_cases] >>
metis_tac [])
>- (
simp [LAST_DEF] >>
qpat_x_assum `good_path _ (_::_)` mp_tac >>
qpat_x_assum `good_path _ (_::_)` mp_tac >>
simp [Once good_path_cases] >>
rw [] >> rw [] >>
metis_tac [ip_equiv_next, ip_equiv_sym]))
>- (Cases_on `path` >> fs [] >> metis_tac [ip_equiv_refl])) >>
rw [] >>
`ip1'.f = (last (entry_ip ip2.f::path')).f`
by (
irule good_path_same_func >>
qexists_tac `entry_ip ip2.f::path'` >>
qexists_tac `prog` >>
conj_tac
>- (
Cases_on `path` >>
full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND, APPEND_NIL, LAST_CONS]
>- metis_tac [MEM_FRONT] >>
full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND] >> fs [] >> rw [FRONT_DEF] >> fs [] >>
metis_tac [ip_equiv_assigns])
>- metis_tac [MEM_LAST]) >>
`ip2'.f = ip1.f` by fs [ip_equiv_def] >>
`ip_equiv ip2' ip1` by metis_tac [] >>
rw [] >>
Cases_on `path` >> fs [] >>
full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND] >> fs [] >> rw [FRONT_DEF] >> fs []
>- (fs [FRONT_DEF] >> metis_tac [ip_equiv_sym, ip_equiv_trans])
>- (fs [ip_equiv_def, entry_ip_def] >> metis_tac [pc_component_equality])
>- (fs [FRONT_DEF] >> metis_tac [ip_equiv_sym, ip_equiv_trans])
>- (
`mem ip1' path' = mem ip1' (front path' ++ [last path'])` by metis_tac [APPEND_FRONT_LAST] >>
fs [LAST_DEF] >>
metis_tac [ip_equiv_trans, ip_equiv_assigns])
>- metis_tac [ip_equiv_assigns]
>- metis_tac [ip_equiv_assigns]
QED
Theorem ssa_dominates_live_range:
∀prog r ip.
is_ssa prog ∧ r ∈ uses prog ip
⇒
∃ip1. ip1.f = ip.f ∧ r ∈ image fst (assigns prog ip1) ∧
∀ip2. ip2.f = ip.f ∧ r ∈ live prog ip2 ⇒
dominates prog ip1 ip2
Proof
rw [] >> drule ssa_dominates_live_range_lem >> rw [] >>
fs [is_ssa_def] >>
first_assum drule >> rw [] >> metis_tac []
QED
Theorem reachable_dominates_same_func:
∀prog ip1 ip2. reachable prog ip2 ∧ dominates prog ip1 ip2 ⇒ ip1.f = ip2.f
Proof
rw [reachable_def, dominates_def] >> res_tac >>
`ip1'.f = (last (entry_ip ip2.f::path)).f` suffices_by fs [ip_equiv_def] >>
irule good_path_same_func >>
metis_tac [MEM_LAST, MEM_FRONT]
QED
Theorem next_ips_reachable:
∀prog ip1 ip2. reachable prog ip1 ∧ ip2 ∈ next_ips prog ip1 ⇒ reachable prog ip2
Proof
rw [] >> imp_res_tac next_ips_same_func >>
fs [reachable_def] >>
qexists_tac `path ++ [ip2]` >>
simp_tac std_ss [GSYM APPEND, LAST_APPEND_CONS, LAST_CONS] >>
simp [good_path_append] >>
simp [Once good_path_cases, ip_equiv_refl] >>
rw []
>- (fs [next_ips_cases, IN_DEF] >> metis_tac [])
>- metis_tac [ip_equiv_next, ip_equiv_sym]
QED
(* ----- A theory of *dominator ordered* programs ------ *)
(* A list of basic blocks is dominator ordered if each variable use occurs after
* the assignment to that variable. We can also define a notion of variable
* liveness that follows the list structure, rather than the CFG structure, and
* show that for dominator ordered lists, the live set is empty at the entry
* point *)
Definition instrs_live_def:
(instrs_live [] = ({}, {})) ∧
(instrs_live (i::is) =
let (gen, kill) = instrs_live is in
(instr_uses i ∪ (gen DIFF image fst (instr_assigns i)),
(image fst (instr_assigns i) ∪ (kill DIFF instr_uses i))))
End
Definition header_uses_def:
(header_uses (Head phis land) =
bigunion { phi_uses from_l p | from_l,p | mem p phis }) ∧
(header_uses Entry = {})
End
Definition header_assigns_def:
(header_assigns (Head phis land) = set (map (fst o phi_assigns) phis)) ∧
(header_assigns Entry = {})
End
Definition linear_live_def:
(linear_live [] = {}) ∧
(linear_live (b::bs) =
let (gen,kill) = instrs_live b.body in
header_uses b.h ∪ (gen ∪ (linear_live bs DIFF kill) DIFF header_assigns b.h))
End
Definition linear_pc_less_def:
linear_pc_less = $< LEX bip_less
End
Inductive lpc_get_instr:
(∀i idx bs.
i < length bs ∧
idx < length (el i bs).body
⇒
lpc_get_instr bs (i, Offset idx) (Inl (el idx (el i bs).body))) ∧
(∀i from_l phis bs landing.
i < length bs ∧
(el i bs).h = Head phis landing
⇒
lpc_get_instr bs (i, Phi_ip from_l) (Inr (from_l, phis)))
End
Inductive lpc_assigns:
(∀bs ip i r.
lpc_get_instr bs ip (Inl i) ∧
r ∈ instr_assigns i
⇒
lpc_assigns bs ip r) ∧
(∀bs ip from_l phis r.
lpc_get_instr bs ip (Inr (from_l, phis)) ∧
r ∈ set (map phi_assigns phis)
⇒
lpc_assigns bs ip r)
End
Inductive lpc_uses:
(∀bs ip i r.
lpc_get_instr bs ip (Inl i) ∧
r ∈ instr_uses i
⇒
lpc_uses bs ip r) ∧
(∀bs ip from_l phis r.
lpc_get_instr bs ip (Inr (from_l, phis)) ∧
r ∈ BIGUNION (set (map (phi_uses from_l) phis))
⇒
lpc_uses bs ip r)
End
Definition dominator_ordered_def:
dominator_ordered p ⇔
∀f d lip1 r.
alookup p (Fn f) = Some d ∧
r ∈ lpc_uses (map snd d.blocks) lip1
⇒
∃lip2. linear_pc_less lip2 lip1 ∧ r ∈ image fst (lpc_assigns (map snd d.blocks) lip2)
End
Theorem instrs_kill_subset_assigns:
snd (instrs_live is) ⊆ bigunion (image (λi. image fst (instr_assigns i)) (set is))
Proof
Induct_on `is` >> rw [instrs_live_def] >>
pairarg_tac >> rw [] >>
fs [SUBSET_DEF]
QED
Theorem instrs_gen_subset_uses:
fst (instrs_live is) ⊆ bigunion (image instr_uses (set is))
Proof
Induct_on `is` >> rw [instrs_live_def] >>
pairarg_tac >> rw [] >>
fs [SUBSET_DEF]
QED
Theorem instrs_subset_assigns_subset_kill_gen:
bigunion (image (λi. image fst (instr_assigns i)) (set is)) ⊆
snd (instrs_live is) ∪ fst (instrs_live is)
Proof
Induct_on `is` >> rw [instrs_live_def] >>
pairarg_tac >> rw [] >> fs [SUBSET_DEF] >> rw [] >>
metis_tac []
QED
Theorem use_assign_in_gen_kill:
∀n is r.
n < length is ∧ (r ∈ image fst (instr_assigns (el n is)) ∨ r ∈ instr_uses (el n is))
⇒
r ∈ fst (instrs_live is) ∨ r ∈ snd (instrs_live is)
Proof
Induct_on `n` >> rw [] >> Cases_on `is` >> rw [] >> fs [] >>
rw [instrs_live_def] >>
pairarg_tac >> rw [] >>
metis_tac [FST, SND, pair_CASES]
QED
Theorem instrs_live_uses:
∀is r.
r ∈ fst (instrs_live is)
⇒
∃i. i < length is ∧ r ∈ instr_uses (el i is) ∧
∀j. j < i ⇒ r ∉ instr_uses (el j is) ∧ r ∉ image fst (instr_assigns (el j is))
Proof
Induct >> rw [instrs_live_def] >> pairarg_tac >> fs []
>- (qexists_tac `0` >> rw []) >>
rename1 `(i1::is)` >>
Cases_on `r ∈ instr_uses i1`
>- (qexists_tac `0` >> rw []) >>
first_x_assum drule >> rw [] >>
qexists_tac `Suc i` >> rw [] >>
Cases_on `j` >> fs []
QED
Theorem lpc_get_instr_cons:
∀b bs i bip.
lpc_get_instr (b::bs) (i + 1, bip) = lpc_get_instr bs (i, bip)
Proof
rw [lpc_get_instr_cases, EXTENSION, IN_DEF, EL_CONS] >>
`PRE (i + 1) = i` by decide_tac >>
rw [ADD1]
QED
Theorem lpc_uses_cons:
∀b bs i bip.
lpc_uses (b::bs) (i + 1, bip) = lpc_uses bs (i, bip)
Proof
rw [lpc_uses_cases, EXTENSION, IN_DEF, lpc_get_instr_cons]
QED
Theorem lpc_uses_0_head:
∀b bs. header_uses b.h = bigunion { lpc_uses (b::bs) (0, Phi_ip from_l) | from_l | T}
Proof
rw [EXTENSION, IN_DEF] >>
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
Cases_on `b.h` >> rw [header_uses_def, MEM_MAP, PULL_EXISTS]
>- metis_tac [] >>
eq_tac >> rw []
>- (
qexists_tac `(\x'. ∃y. x' ∈ phi_uses from_l y ∧ mem y l)` >>
qexists_tac `from_l` >>
rw [] >>
metis_tac []) >>
metis_tac []
QED
Theorem lpc_uses_0_body:
∀b bs. lpc_uses (b::bs) (0, Offset n) ⊆ fst (instrs_live b.body) ∪ snd (instrs_live b.body)
Proof
rw [SUBSET_DEF, IN_DEF] >>
fs [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
metis_tac [use_assign_in_gen_kill, IN_DEF]
QED
Theorem lpc_assigns_cons:
∀b bs i bip.
lpc_assigns (b::bs) (i + 1, bip) = lpc_assigns bs (i, bip)
Proof
rw [lpc_assigns_cases, EXTENSION, IN_DEF, lpc_get_instr_cons]
QED
Theorem lpc_assigns_0_head:
∀b bs from_l.
image fst (lpc_assigns (b::bs) (0, Phi_ip from_l)) = header_assigns b.h
Proof
rw [EXTENSION, Once IN_DEF] >>
rw [lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
Cases_on `b.h` >> rw [header_assigns_def, MEM_MAP] >>
metis_tac []
QED
Theorem lpc_assigns_0_body:
∀b bs. image fst (lpc_assigns (b::bs) (0, Offset n)) ⊆ fst (instrs_live b.body) ∪ snd (instrs_live b.body)
Proof
rw [SUBSET_DEF, IN_DEF] >>
fs [lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
drule use_assign_in_gen_kill >>
rw [] >>
metis_tac [IN_DEF]
QED
Theorem linear_live_uses:
∀bs r. r ∈ linear_live bs ⇒
∃lip. r ∈ lpc_uses bs lip ∧
∀lip2. linear_pc_less lip2 lip ⇒ r ∉ lpc_uses bs lip2 ∧ r ∉ image fst (lpc_assigns bs lip2)
Proof
Induct >> rw [linear_live_def] >>
rename1 `header_uses b.h` >>
Cases_on `r ∈ header_uses b.h`
>- (
fs [header_uses_def] >> pairarg_tac >> fs [] >>
Cases_on `b.h` >> fs [header_uses_def] >>
qexists_tac `(0, Phi_ip from_l)` >> fs [header_uses_def] >>
conj_tac
>- (
simp [IN_DEF] >>
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
rw [MEM_MAP] >> metis_tac [])
>- (
gen_tac >> simp [linear_pc_less_def, LEX_DEF] >>
pairarg_tac >> simp [bip_less_def])) >>
pairarg_tac >> Cases_on `r ∈ gen` >> fs []
>- (
`r ∈ fst (instrs_live b.body)` by metis_tac [FST] >>
drule instrs_live_uses >> rw [] >>
qexists_tac `(0, Offset i)` >>
conj_tac
>- (
simp [IN_DEF] >>
rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >>
rw [MEM_MAP] >> metis_tac [])
>- (
gen_tac >> strip_tac >>
PairCases_on `lip2` >> fs [linear_pc_less_def, LEX_DEF_THM] >>
Cases_on `lip21` >> fs [bip_less_def]
>- (
Cases_on `b.h` >> fs [header_assigns_def, header_uses_def] >>
simp [IN_DEF] >>
rw [lpc_uses_cases, lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
fs [MEM_MAP] >>
metis_tac [FST])
>- (
first_x_assum drule >>
simp [IN_DEF] >>
rw [lpc_uses_cases, lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >>
rw [IN_DEF])))
>- (
first_x_assum drule >> rw [] >>
PairCases_on `lip` >>
qexists_tac `lip0+1,lip1` >> simp [IN_DEF] >>
conj_tac
>- fs [lpc_uses_cons, IN_DEF] >>
gen_tac >> disch_tac >>
PairCases_on `lip2` >>
Cases_on `lip20` >> fs [ADD1]
>- (
Cases_on `lip21`
>- (
rename1 `Phi_ip from_l` >>
`r ∉ bigunion {lpc_uses (b::bs) (0,Phi_ip from_l) | from_l | T} ∧
r ∉ image fst (lpc_assigns (b::bs) (0,Phi_ip from_l))`
by metis_tac [lpc_assigns_0_head, lpc_uses_0_head] >>
fs [IN_DEF] >> metis_tac [])
>- (
`r ∉ image fst (lpc_assigns (b::bs) (0,Offset n)) ∧
r ∉ lpc_uses (b::bs) (0,Offset n)`
by metis_tac [IN_UNION, lpc_assigns_0_body, lpc_uses_0_body, FST, SND, SUBSET_DEF] >>
fs [IN_DEF]))
>- (
`linear_pc_less (n, lip21) (lip0, lip1)` by fs [linear_pc_less_def, LEX_DEF] >>
first_x_assum drule >>
rw [lpc_uses_cons, lpc_assigns_cons] >> fs [IN_DEF]))
QED
Theorem dominator_ordered_linear_live:
∀p f d.
dominator_ordered p ∧
alookup p (Fn f) = Some d
⇒
linear_live (map snd d.blocks) = {}
Proof
rw [dominator_ordered_def] >> first_x_assum drule >> rw [EXTENSION] >>
CCONTR_TAC >> fs [] >> drule linear_live_uses >> rw [] >>
metis_tac []
QED
Definition block_assigns_def:
block_assigns (l, b) =
header_assigns b.h ∪ image fst (bigunion (image instr_assigns (set b.body)))
End
Definition block_uses_def:
block_uses (l, b) =
header_uses b.h ∪ bigunion (image instr_uses (set b.body))
End
Definition block_order_def:
block_order bs =
tc { (b1, b2) |
fst b1 ≠ fst b2 ∧ mem b1 bs ∧ mem b2 bs ∧ (∃r. r ∈ block_assigns b1 ∧ r ∈ block_uses b2) }
End
Theorem prog_ok_distinct_lem:
loc_prog_ok p ∧ alookup p f = Some d ⇒ all_distinct (map fst d.blocks)
Proof
rw [loc_prog_ok_def, EVERY_MEM] >>
drule ALOOKUP_MEM >> rw [] >>
res_tac >> fs []
QED
Theorem block_order_dominates:
∀b1 b2.
(b1,b2) ∈ block_order d.blocks ⇒
loc_prog_ok prog ∧
is_ssa prog ∧
alookup prog f = Some d ⇒
∃ip1 ip2.
dominates prog ip1 ip2 ∧
ip1.f = f ∧
ip2.f = f ∧
ip1.b = fst b1 ∧
ip2.b = fst b2 ∧
fst b1 ≠ fst b2 ∧
(∃i2. get_instr prog ip2 i2)
Proof
simp [block_order_def] >>
ho_match_mp_tac tc_ind >> rw []
>- (
fs [is_ssa_def] >>
`∃ip1. r ∈ uses prog ip1 ∧ ip1.f = f ∧ ip1.b = fst b2`
by (
simp [Once IN_DEF, uses_cases] >> Cases_on `b2` >> fs [block_uses_def] >>
fs [get_instr_cases, PULL_EXISTS]
>- (
rename1 `_ ∈ header_uses b.h` >>
Cases_on `b.h` >> fs [header_uses_def] >> rw [] >>
rename1 `mem (l1, _) _` >>
qexists_tac `<| f := f; b := l1; i := Phi_ip from_l |>` >> rw [] >>
qexists_tac `l` >> qexists_tac `phi_uses from_l p` >> qexists_tac `b` >>
rw [MEM_MAP] >>
metis_tac [ALOOKUP_ALL_DISTINCT_MEM, loc_prog_ok_def, prog_ok_distinct_lem])
>- (
fs [MEM_EL] >> rw [] >>
rename [`n1 < length b.body`, `(l1, _) = el _ _`] >>
qexists_tac `<| f := f; b := l1; i := Offset n1 |>` >> rw [] >>
metis_tac [ALOOKUP_ALL_DISTINCT_MEM, loc_prog_ok_def, EL_MEM, prog_ok_distinct_lem])) >>
first_x_assum drule >> rw [] >>
qexists_tac `ip2` >> qexists_tac `ip1` >> rw []
>- (
rename1 `rt ∈ assigns _ _` >>
`∃ip3 t. (fst rt, t) ∈ assigns prog ip3 ∧ ip3.f = ip1.f ∧ ip3.b = fst b1`
by (
simp [Once IN_DEF, assigns_cases] >> Cases_on `b1` >> fs [block_assigns_def] >>
fs [get_instr_cases, PULL_EXISTS]
>- (
rename1 `_ ∈ header_assigns b.h` >>
Cases_on `b.h` >> fs [header_assigns_def] >> rw [] >>
rename1 `mem (l1, _) _` >>
fs [MEM_MAP] >>
qexists_tac `<| f := ip1.f; b := l1; i := Phi_ip from_l |>` >> rw [] >>
qexists_tac `SND (phi_assigns y)` >> qexists_tac `l` >> qexists_tac `b` >>
qexists_tac `o'` >> rw [] >>
metis_tac [FST, ALOOKUP_ALL_DISTINCT_MEM, loc_prog_ok_def, SND, prog_ok_distinct_lem])
>- (
fs [MEM_EL] >> rw [] >>
rename [`n1 < length b.body`, `(l1, _) = el _ _`] >>
qexists_tac `<| f := ip1.f; b := l1; i := Offset n1 |>` >> rw [] >>
qexists_tac `snd x` >>
rw [] >>
metis_tac [ALOOKUP_ALL_DISTINCT_MEM, loc_prog_ok_def, EL_MEM, FST, SND, prog_ok_distinct_lem])) >>
metis_tac [ip_equiv_def, FST])
>- (fs [uses_cases, IN_DEF] >> metis_tac []))
>- (
first_x_assum drule >> first_x_assum drule >> rw [] >>
Cases_on `ip1.b = ip2.b ∨ ip1'.b = ip2'.b`
>- metis_tac [] >>
qexists_tac `ip1` >> qexists_tac `ip2'` >>
Cases_on `bip_less ip2.i ip1'.i`
>- (
`dominates prog ip2 ip1'` by metis_tac [same_block_dominates, loc_prog_ok_def] >>
rw []
>- metis_tac [dominates_trans]
>- (
CCONTR_TAC >> fs [] >>
Cases_on `bip_less ip2'.i ip1.i`
>- (
`dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >>
metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >>
Cases_on `bip_less ip1.i ip2'.i`
>- (
`dominates prog ip2' ip2` by metis_tac [dominates_same_block] >>
metis_tac [dominates_antisym, dominates_trans, is_ssa_def])
>- (
`dominates prog ip1' ip1` by metis_tac [ip_equiv_dominates, bip_less_tri] >>
metis_tac [dominates_antisym, dominates_trans, is_ssa_def]))
>- metis_tac []) >>
Cases_on `bip_less ip1'.i ip2.i`
>- (
`dominates prog ip2 ip2'` by metis_tac [dominates_same_block] >>
rw []
>- metis_tac [dominates_trans]
>- (
CCONTR_TAC >> fs [] >>
Cases_on `bip_less ip2'.i ip1.i`
>- (
`dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >>
metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >>
Cases_on `bip_less ip1.i ip2'.i`
>- (
`dominates prog ip2' ip2` by metis_tac [dominates_same_block] >>
metis_tac [dominates_antisym, dominates_trans, is_ssa_def])
>- (
`dominates prog ip2 ip1` by metis_tac [ip_equiv_dominates, bip_less_tri] >>
metis_tac [dominates_antisym, dominates_trans, is_ssa_def]))
>- metis_tac [])
>- (
`ip_equiv ip1' ip2` by metis_tac [bip_less_tri] >>
`dominates prog ip1 ip2'` by metis_tac [dominates_trans, ip_equiv_sym, ip_equiv_dominates] >>
rw []
>- (
CCONTR_TAC >> fs [] >>
Cases_on `bip_less ip2'.i ip1.i`
>- (
`dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >>
metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >>
Cases_on `bip_less ip1.i ip2'.i`
>- (
`dominates prog ip2' ip2` by metis_tac [dominates_same_block] >>
`dominates prog ip2 ip2'` by metis_tac [ip_equiv_dominates2, ip_equiv_sym] >>
metis_tac [dominates_antisym, is_ssa_def])
>- (
`dominates prog ip2' ip2` by metis_tac [ip_equiv_dominates2, bip_less_tri] >>
`dominates prog ip2 ip2'` by metis_tac [ip_equiv_dominates2, bip_less_tri] >>
metis_tac [dominates_antisym, is_ssa_def]))
>- metis_tac []))
QED
Theorem block_order_po:
∀prog f d.
loc_prog_ok prog ∧ is_ssa prog ∧
alookup prog f = Some d
⇒
partial_order (rc (block_order d.blocks) (set d.blocks)) (set d.blocks)
Proof
rw [partial_order_def]
>- (rw [block_order_def, domain_def, SUBSET_DEF, rc_def] >> drule tc_domain_range >> rw [domain_def])
>- (rw [block_order_def, range_def, SUBSET_DEF, rc_def] >> rw [] >> drule tc_domain_range >> rw [range_def])
>- metis_tac [block_order_def, transitive_rc, tc_transitive]
>- metis_tac [rc_is_reflexive]
>- (
simp [antisym_rc] >> rw [antisym_def] >>
pop_assum mp_tac >>
drule block_order_dominates >>
disch_then drule >> simp [] >> disch_then drule >> rw [] >>
drule block_order_dominates >>
disch_then drule >> simp [] >> disch_then drule >> rw [] >>
CCONTR_TAC >>
Cases_on `bip_less ip2.i ip1'.i`
>- (
`dominates prog ip2 ip1'` by metis_tac [same_block_dominates, loc_prog_ok_def] >>
Cases_on `bip_less ip2'.i ip1.i`
>- (
`dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >>
metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >>
Cases_on `bip_less ip1.i ip2'.i`
>- (
`dominates prog ip2' ip2` by metis_tac [dominates_same_block] >>
metis_tac [dominates_antisym, dominates_trans, is_ssa_def])
>- (
`dominates prog ip1' ip1` by metis_tac [ip_equiv_dominates, bip_less_tri] >>
metis_tac [dominates_antisym, dominates_trans, is_ssa_def])) >>
Cases_on `bip_less ip1'.i ip2.i`
>- (
`dominates prog ip2 ip2'` by metis_tac [dominates_same_block] >>
Cases_on `bip_less ip2'.i ip1.i`
>- (
`dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >>
metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >>
Cases_on `bip_less ip1.i ip2'.i`
>- (
`dominates prog ip2' ip2` by metis_tac [dominates_same_block] >>
metis_tac [dominates_antisym, dominates_trans, is_ssa_def])
>- (
`dominates prog ip2 ip1` by metis_tac [ip_equiv_dominates, bip_less_tri] >>
metis_tac [dominates_antisym, dominates_trans, is_ssa_def]))
>- (
`ip_equiv ip1' ip2` by metis_tac [bip_less_tri] >>
`dominates prog ip1 ip2'` by metis_tac [dominates_trans, ip_equiv_sym, ip_equiv_dominates] >>
Cases_on `bip_less ip2'.i ip1.i`
>- (
`dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >>
metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >>
Cases_on `bip_less ip1.i ip2'.i`
>- (
`dominates prog ip2' ip2` by metis_tac [dominates_same_block] >>
`dominates prog ip2 ip2'` by metis_tac [ip_equiv_dominates2, ip_equiv_sym] >>
metis_tac [dominates_antisym, is_ssa_def])
>- (
`dominates prog ip2' ip2` by metis_tac [ip_equiv_dominates2, bip_less_tri] >>
`dominates prog ip2 ip2'` by metis_tac [ip_equiv_dominates2, bip_less_tri] >>
metis_tac [dominates_antisym, is_ssa_def])))
QED
Theorem assigns_weak:
∀l d p ip r. ~mem l (map fst p) ∧ r ∈ assigns p ip ⇒ r ∈ assigns ((l,d)::p) ip
Proof
rw [assigns_cases, IN_DEF, get_instr_cases, PULL_EXISTS] >>
imp_res_tac ALOOKUP_MEM >>
fs [LIST_TO_SET_MAP] >> metis_tac [FST]
QED
Theorem uses_weak:
∀l d p ip r. ip.f ≠ l ⇒ uses ((l,d)::p) ip = uses p ip
Proof
rw [uses_cases, EXTENSION, IN_DEF, get_instr_cases, PULL_EXISTS]
QED
Theorem assigns_weak2:
∀l d p ip r. ip.f ≠ l ⇒ assigns ((l,d)::p) ip = assigns p ip
Proof
rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, PULL_EXISTS]
QED
Theorem good_path_weak:
∀l d p ip path. ip.f ≠ l ⇒ good_path ((l,d)::p) (ip::path) = good_path p (ip::path)
Proof
Induct_on `path` >> rw [] >>
ONCE_REWRITE_TAC [good_path_cases] >> rw []
>- rw [EXTENSION, IN_DEF, get_instr_cases, PULL_EXISTS] >>
rename1 `good_path _ (p1::_)` >>
Cases_on `p1.f ≠ l`
>- (
first_x_assum drule >> rw [] >>
eq_tac >> rw [] >>
fs [next_ips_cases, EXTENSION, IN_DEF, get_instr_cases, PULL_EXISTS] >> rw [] >>
metis_tac [])
>- metis_tac [next_ips_same_func]
QED
Theorem dominates_weak:
∀l d p ip1 ip2. ip1.f ≠ l ⇒ dominates ((l,d)::p) ip2 ip1 = dominates p ip2 ip1
Proof
rw [dominates_def, EXTENSION, IN_DEF] >>
`(entry_ip ip1.f).f = ip1.f` by rw [entry_ip_def] >>
metis_tac [good_path_weak]
QED
Theorem uses_good_ip:
∀r prog ip. r ∈ uses prog ip ⇒ mem ip.f (map fst prog)
Proof
rw [uses_cases, IN_DEF, get_instr_cases] >>
imp_res_tac ALOOKUP_MEM >>
fs [LIST_TO_SET_MAP] >>
metis_tac [FST]
QED
Theorem is_ssa_weak:
∀l d p. ~mem l (map fst p) ∧ is_ssa ((l,d)::p) ⇒ is_ssa p
Proof
rw [is_ssa_def]
>- (first_x_assum irule >> rw [PULL_EXISTS] >> metis_tac [assigns_weak])
>- (
drule uses_good_ip >> rw [] >>
last_x_assum (qspec_then `ip1` mp_tac) >> rw [] >>
`ip1.f ≠ l` by metis_tac [MEM_MAP] >>
fs [uses_weak, assigns_weak2] >>
first_x_assum drule >> rw [] >>
qexists_tac `ip2` >> rw [] >> rfs [] >>
metis_tac [assigns_weak2, dominates_weak])
>- (
`get_instr ((l,d)::p) ip i`
by (fs [get_instr_cases, MEM_MAP] >> rw [] >> metis_tac [ALOOKUP_MEM, FST]) >>
first_x_assum drule >> rw [reachable_def] >>
qexists_tac `path` >> rw [] >>
`(entry_ip ip.f).f ≠ l` suffices_by metis_tac [good_path_weak] >>
rw [entry_ip_def] >> fs [get_instr_cases, MEM_MAP] >>
CCONTR_TAC >> fs [] >> rw [] >>
metis_tac [FST, ALOOKUP_MEM])
QED
Theorem loc_prog_ok_weak:
∀l d p. ~mem l (map fst p) ∧ loc_prog_ok ((l,d)::p) ⇒ loc_prog_ok p
Proof
rw [loc_prog_ok_def, MEM_MAP] >>
metis_tac [ALOOKUP_MEM, FST]
QED
Triviality in_uncurry:
(x,y) ∈ UNCURRY R ⇔ R x y
Proof
rw [IN_DEF, UNCURRY_DEF]
QED
Theorem sorted_all_distinct_idx:
∀R l. all_distinct l ∧ transitive R ∧ reflexive R ∧ antisym (rrestrict (UNCURRY R) (set l)) ⇒
(SORTED R l ⇔ (∀i j. i < length l ∧ j < length l ⇒ (R (el i l) (el j l) ⇔ i ≤ j)))
Proof
Induct_on `l` >> rw [sortingTheory.SORTED_EQ] >>
`antisym (rrestrict (UNCURRY R) (set l))`
by (fs [antisym_def] >> rw [in_rrestrict]) >>
eq_tac >> rw []
>- (
Cases_on `i` >> Cases_on `j` >> rw [] >> fs []
>- fs [relationTheory.reflexive_def]
>- (first_x_assum irule >> rw [MEM_EL] >> metis_tac [])
>- (
fs [antisym_def] >>
last_x_assum (qspecl_then [`h`, `el n l`] mp_tac) >>
simp [in_rrestrict, in_uncurry] >> metis_tac [MEM_EL]))
>- (first_x_assum (qspecl_then [`Suc i`, `Suc j`] mp_tac) >> rw [])
>- (
fs [MEM_EL] >> rw [] >>
first_x_assum (qspecl_then [`0`, `Suc n`] mp_tac) >> rw [])
QED
Theorem lpc_uses_to_uses:
∀r bs lip prog f d.
r ∈ lpc_uses (map snd bs) lip ∧
alookup prog (Fn f) = Some d ∧
PERM d.blocks bs ∧
all_distinct (map fst (d.blocks))
⇒
r ∈ uses prog <| f := Fn f; b := fst (el (fst lip) bs); i := snd lip |> ∧
fst lip < length bs
Proof
rw [IN_DEF, uses_cases, lpc_uses_cases, get_instr_cases, PULL_EXISTS,
lpc_get_instr_cases] >>
rw []
>- (
qexists_tac `el i' (map snd bs)` >> rw [] >>
irule ALOOKUP_ALL_DISTINCT_MEM >> rw [] >>
drule sortingTheory.MEM_PERM >> rw [MEM_EL, EL_MAP] >>
metis_tac [pair_CASES, FST, SND])
>- (
qexists_tac `phis` >>
qexists_tac `el i (map snd bs)` >> rw [] >>
qexists_tac `s` >> rw [] >>
irule ALOOKUP_ALL_DISTINCT_MEM >> rw [] >>
drule sortingTheory.MEM_PERM >> rw [MEM_EL, EL_MAP] >>
metis_tac [pair_CASES, FST, SND])
QED
Theorem assigns_to_block_assigns:
∀prog ip d b r l.
r ∈ assigns prog ip ∧
alookup prog ip.f = Some d ∧
alookup d.blocks ip.b = Some b
⇒
fst r ∈ block_assigns (l:label option, b)
Proof
rw [] >>
qpat_x_assum `_ ∈ assigns _ _` mp_tac >>
simp [Once IN_DEF] >>
rw [assigns_cases, get_instr_cases, PULL_EXISTS, block_assigns_def]
>- (
disj2_tac >>
qexists_tac `r` >> HINT_EXISTS_TAC >>
metis_tac [MEM_EL])
>- (
rw [header_assigns_def, MEM_MAP] >>
disj1_tac >>
fs [MEM_MAP] >> rw [] >>
metis_tac [])
QED
Theorem assigns_to_lpc_assigns:
∀prog ip d r idx (bs : (label option # block) list).
r ∈ assigns prog ip ∧
alookup prog ip.f = Some d ∧
alookup d.blocks ip.b = Some (snd (el idx bs)) ∧
idx < length bs
⇒
r ∈ lpc_assigns (map snd bs) (idx, ip.i)
Proof
rw [assigns_cases, get_instr_cases, PULL_EXISTS, block_assigns_def,
lpc_assigns_cases, IN_DEF, lpc_get_instr_cases] >>
fs [] >> rw [] >> fs [] >> rw [EL_MAP]
QED
Theorem uses_to_block_uses:
∀prog ip d b r l.
r ∈ uses prog ip ∧
alookup prog ip.f = Some d ∧
alookup d.blocks ip.b = Some b
⇒
r ∈ block_uses (l:label option, b)
Proof
rw [] >>
qpat_x_assum `_ ∈ uses _ _` mp_tac >>
simp [Once IN_DEF] >>
rw [uses_cases, get_instr_cases, PULL_EXISTS, block_uses_def]
>- (
disj2_tac >>
metis_tac [MEM_EL])
>- (
rw [header_uses_def, MEM_MAP] >>
disj1_tac >>
fs [MEM_MAP] >> rw [] >>
metis_tac [])
QED
Theorem same_block_assigns_less_uses:
reachable prog ip1 ∧
dominates prog ip2 ip1 ∧
ip1.b = ip2.b ∧
(?i. get_instr prog ip1 i) ∧
(∀fname dec.
alookup prog fname = Some dec ⇒
every (λb. fst b = None ⇔ (snd b).h = Entry) dec.blocks)
⇒
bip_less ip2.i ip1.i
Proof
rw [] >> CCONTR_TAC >> fs [] >>
`ip1.f = ip2.f` by metis_tac [reachable_dominates_same_func] >>
`ip_equiv ip1 ip2 ∨ bip_less ip1.i ip2.i` by metis_tac [bip_less_tri]
>- metis_tac [ip_equiv_dominates2, dominates_irrefl, ip_equiv_sym] >>
metis_tac [dominates_antisym, same_block_dominates]
QED
Theorem ssa_to_dominator_ordered_lem:
∀p1. loc_prog_ok p1 ∧ is_ssa p1 ∧ all_distinct (map fst p1) ∧ every (λ(l,d). all_distinct (map fst d.blocks)) p1 ⇒
∃p2. list_rel (\(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2 ∧
dominator_ordered p2
Proof
Induct_on `p1` >> rw []
>- rw [dominator_ordered_def] >>
`is_ssa p1` by metis_tac [is_ssa_weak, pair_CASES, FST] >>
`loc_prog_ok p1` by metis_tac [loc_prog_ok_weak, pair_CASES, FST] >>
fs [PULL_EXISTS] >>
rename1 `is_ssa (x::_)` >>
`?l d. x = (l,d)` by metis_tac [pair_CASES] >>
`partial_order (rc (block_order d.blocks) (set d.blocks)) (set d.blocks)`
by metis_tac [block_order_po, ALOOKUP_def] >>
rw [] >>
`finite (set d.blocks)` by rw [] >>
drule finite_linear_order_of_finite_po >>
disch_then drule >> rw [] >>
drule finite_linear_order_to_list >>
disch_then drule >> rw [] >>
rename1 `set _ = set bs` >>
qexists_tac `(l, d with blocks := bs)` >>
qexists_tac `p2` >>
conj_asm1_tac >> rw [] >>
fs []
>- (irule sortingTheory.PERM_ALL_DISTINCT >> rw [] >> metis_tac [ALL_DISTINCT_MAP]) >>
qmatch_assum_abbrev_tac `SORTED R _` >>
`transitive R ∧ reflexive R ∧ antisym (rrestrict (UNCURRY R) (set bs))`
by (
fs [linear_order_def, transitive_def, reflexive_def, SUBSET_DEF,
antisym_def, domain_def, range_def, in_rrestrict] >>
rw [Abbr `R`, relationTheory.transitive_def, relationTheory.reflexive_def] >>
fs [IN_DEF] >> metis_tac []) >>
drule sorted_all_distinct_idx >>
disch_then drule >> rw [] >>
fs [dominator_ordered_def] >> rw [PULL_EXISTS] >> fs []
>- (
drule lpc_uses_to_uses >>
disch_then (qspecl_then [`(Fn f,d)::p1`, `f`, `d`] mp_tac) >>
rw [] >>
qmatch_assum_abbrev_tac `_ ∈ uses prog ip1` >>
`?ip2. ip2.f = Fn f ∧ r ∈ image fst (assigns prog ip2) ∧ dominates prog ip2 ip1`
by (fs [is_ssa_def] >> last_x_assum drule >> rw [Abbr `ip1`]) >>
`?idx. idx < length bs ∧ alookup d.blocks ip2.b = Some (snd (el idx bs)) ∧
fst (el idx bs) = ip2.b`
by (
fs [assigns_cases, IN_DEF, get_instr_cases, Abbr `prog`] >>
rfs [] >>
drule ALOOKUP_MEM >>
drule sortingTheory.MEM_PERM >>
rw [MEM_EL] >>
metis_tac [FST, SND]) >>
`?t. (r, t) ∈ assigns prog ip2` by metis_tac [IN_IMAGE, pair_CASES, FST] >>
drule assigns_to_block_assigns >> rw [Abbr `prog`] >>
qexists_tac `(idx, ip2.i)` >>
qexists_tac `(r, t)` >>
rw []
>- (
`(el idx bs, el (fst lip1) bs) ∈ rc (block_order d.blocks) (set d.blocks)`
by (
simp [rc_def, block_order_def, EL_MEM] >>
drule uses_to_block_uses >> simp [Abbr `ip1`] >>
`alookup d.blocks (fst (el (fst lip1) bs)) = Some (snd (el (fst lip1) bs))`
by (
qmatch_goalsub_abbrev_tac `(fst b)` >>
`mem b bs` by (rw [Abbr `b`, MEM_EL] >> metis_tac []) >>
metis_tac [ALOOKUP_ALL_DISTINCT_MEM, PAIR]) >>
rw [METIS_PROVE [] ``a ∨ b ⇔ ~b ⇒ a``] >>
simp [Once tc_cases] >>
disj1_tac >> rw [MEM_EL]
>- (
`all_distinct (map fst bs)`
by (
irule ALL_DISTINCT_MAP_INJ >> rw [] >>
`mem x d.blocks ∧ mem y d.blocks` by metis_tac [sortingTheory.MEM_PERM] >>
metis_tac [PAIR, ALOOKUP_ALL_DISTINCT_MEM, optionTheory.SOME_11]) >>
metis_tac [PAIR, optionTheory.SOME_11]) >>
metis_tac [PAIR, FST]) >>
rw [] >>
`idx ≤ fst lip1`
by (
`R (el idx bs) (el (fst lip1) bs)` suffices_by metis_tac [] >>
fs [Abbr `R`, SUBSET_DEF, rc_def] >> metis_tac []) >>
PairCases_on `lip1` >>
rw [linear_pc_less_def, LEX_DEF_THM] >> fs [LESS_OR_EQ] >>
rw [] >>
`reachable ((Fn f,d)::p1) ip1`
by (
fs [is_ssa_def] >> first_x_assum irule >>
fs [uses_cases, IN_DEF] >> metis_tac []) >>
drule same_block_assigns_less_uses >>
disch_then drule >> simp [Abbr `ip1`] >>
disch_then irule >> rw [] >>
fs [uses_cases, IN_DEF, loc_prog_ok_def] >>
metis_tac [])
>- (drule assigns_to_lpc_assigns >> simp []))
>- metis_tac []
QED
Theorem prog_ok_to_loc_prog_ok:
∀p. prog_ok p ⇒ loc_prog_ok p
Proof
rw [prog_ok_def, loc_prog_ok_def] >> metis_tac []
QED
Theorem alookup_perm_blocks:
∀p1 p2.
list_rel (λ(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2
⇒
(∀l d. alookup p2 l = Some d ⇒ ?d'. alookup p1 l = Some d' ∧ PERM d'.blocks d.blocks) ∧
(∀l d. alookup p1 l = Some d ⇒ ?d'. alookup p2 l = Some d' ∧ PERM d.blocks d'.blocks) ∧
(map fst p1 = map fst p2)
Proof
Induct_on `p1` >> rw [] >>
pairarg_tac >> fs [] >> pairarg_tac >> fs [] >> rw [] >> rw [] >> fs [] >>
metis_tac []
QED
Theorem alookup_perm:
∀b1 b2. PERM b1 b2 ∧ all_distinct (map fst b1) ⇒ alookup b1 = alookup b2
Proof
rw [] >>
irule ALOOKUP_ALL_DISTINCT_PERM_same >>
rw [sortingTheory.PERM_MAP, sortingTheory.PERM_LIST_TO_SET]
QED
Theorem get_instr_perm_blocks:
every (\(l,d). all_distinct (map fst d.blocks)) p1 ∧
list_rel (λ(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2
⇒
get_instr p1 = get_instr p2
Proof
rw [get_instr_cases, FUN_EQ_THM] >>
eq_tac >> rw [] >>
drule alookup_perm_blocks >> rw [] >>
first_x_assum drule >> rw [] >> rw [] >>
`all_distinct (map fst d.blocks)`
by (
fs [EVERY_MEM] >>
imp_res_tac ALOOKUP_MEM >>
res_tac >> fs [] >>
metis_tac [sortingTheory.ALL_DISTINCT_PERM, sortingTheory.PERM_MAP]) >>
metis_tac [alookup_perm, sortingTheory.PERM_SYM]
QED
Theorem next_ips_perm_blocks:
every (\(l,d). all_distinct (map fst d.blocks)) p1 ∧
list_rel (λ(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2
⇒
next_ips p1 = next_ips p2
Proof
rw [FUN_EQ_THM, next_ips_cases] >> metis_tac [get_instr_perm_blocks]
QED
Theorem good_path_perm_blocks:
∀p1 p2.
every (\(l,d). all_distinct (map fst d.blocks)) p1 ∧
list_rel (λ(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2
⇒
good_path p1 = good_path p2
Proof
rw [] >> simp [FUN_EQ_THM] >>
Induct >> rw [] >>
ONCE_REWRITE_TAC [good_path_cases] >> rw [] >>
metis_tac [next_ips_perm_blocks, get_instr_perm_blocks]
QED
Theorem ssa_to_dominator_ordered:
∀p1.
prog_ok p1 ∧ is_ssa p1
⇒
∃p2. list_rel (\(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2 ∧
dominator_ordered p2 ∧ prog_ok p2 ∧ is_ssa p2
Proof
rw [] >>
drule prog_ok_to_loc_prog_ok >> rw [] >>
drule ssa_to_dominator_ordered_lem >> simp [] >>
impl_tac
>- (
fs [prog_ok_def] >> rw [EVERY_MEM] >>
pairarg_tac >> fs [] >> rw [] >> metis_tac [ALOOKUP_ALL_DISTINCT_MEM]) >>
rw [] >>
qexists_tac `p2` >> rw [] >>
`every (λ(l,d). all_distinct (map fst d.blocks)) p1`
by fs [prog_ok_def] >>
drule get_instr_perm_blocks >> disch_then drule >> rw [] >>
drule good_path_perm_blocks >> disch_then drule >> rw []
>- (
drule alookup_perm_blocks >> rw [] >>
fs [prog_ok_def] >>
conj_tac
>- (
rw [] >> rpt (last_x_assum (qspec_then `fname` mp_tac)) >> rw [] >>
metis_tac [alookup_perm, sortingTheory.MEM_PERM, prog_ok_distinct_lem]) >>
conj_tac >- metis_tac [alookup_perm, sortingTheory.MEM_PERM, prog_ok_distinct_lem] >>
conj_tac >- (fs [EVERY_MEM] >> metis_tac [alookup_perm, sortingTheory.MEM_PERM]) >>
conj_tac
>- (
rfs [LIST_REL_EL_EQN, EVERY_EL] >> rw [] >>
pairarg_tac >> fs [] >>
rpt (first_x_assum (qspec_then `n` mp_tac)) >> rw [] >>
pairarg_tac >> fs [] >>
metis_tac [sortingTheory.ALL_DISTINCT_PERM, sortingTheory.PERM_MAP]) >>
conj_tac >- metis_tac [alookup_perm, sortingTheory.MEM_PERM]
>- metis_tac [alookup_perm, sortingTheory.MEM_PERM])
>- (
fs [is_ssa_def, IN_DEF, uses_cases, assigns_cases, reachable_def, dominates_def] >>
rw [] >>
first_x_assum irule >> metis_tac [])
QED
export_theory ();